JohnSmith9982 commited on
Commit
440cff3
·
1 Parent(s): dc90d99

去除UI微信化

Browse files
Files changed (4) hide show
  1. app.py +11 -65
  2. presets.py +47 -15
  3. requirements.txt +3 -1
  4. utils.py +24 -418
app.py CHANGED
@@ -1,14 +1,17 @@
1
  # -*- coding:utf-8 -*-
2
- import gradio as gr
3
  import os
4
  import logging
5
  import sys
6
- import argparse
 
 
7
  from utils import *
8
  from presets import *
 
 
9
 
10
  logging.basicConfig(
11
- level=logging.INFO,
12
  format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
13
  )
14
 
@@ -49,72 +52,13 @@ else:
49
  authflag = True
50
 
51
  gr.Chatbot.postprocess = postprocess
 
52
 
53
  with open("custom.css", "r", encoding="utf-8") as f:
54
  customCSS = f.read()
55
 
56
  with gr.Blocks(
57
  css=customCSS,
58
- theme=gr.themes.Soft(
59
- primary_hue=gr.themes.Color(
60
- c50="#02C160",
61
- c100="rgba(2, 193, 96, 0.2)",
62
- c200="#02C160",
63
- c300="rgba(2, 193, 96, 0.32)",
64
- c400="rgba(2, 193, 96, 0.32)",
65
- c500="rgba(2, 193, 96, 1.0)",
66
- c600="rgba(2, 193, 96, 1.0)",
67
- c700="rgba(2, 193, 96, 0.32)",
68
- c800="rgba(2, 193, 96, 0.32)",
69
- c900="#02C160",
70
- c950="#02C160",
71
- ),
72
- secondary_hue=gr.themes.Color(
73
- c50="#576b95",
74
- c100="#576b95",
75
- c200="#576b95",
76
- c300="#576b95",
77
- c400="#576b95",
78
- c500="#576b95",
79
- c600="#576b95",
80
- c700="#576b95",
81
- c800="#576b95",
82
- c900="#576b95",
83
- c950="#576b95",
84
- ),
85
- neutral_hue=gr.themes.Color(
86
- name="gray",
87
- c50="#f9fafb",
88
- c100="#f3f4f6",
89
- c200="#e5e7eb",
90
- c300="#d1d5db",
91
- c400="#B2B2B2",
92
- c500="#808080",
93
- c600="#636363",
94
- c700="#515151",
95
- c800="#393939",
96
- c900="#272727",
97
- c950="#171717",
98
- ),
99
- radius_size=gr.themes.sizes.radius_sm,
100
- ).set(
101
- button_primary_background_fill="#06AE56",
102
- button_primary_background_fill_dark="#06AE56",
103
- button_primary_background_fill_hover="#07C863",
104
- button_primary_border_color="#06AE56",
105
- button_primary_border_color_dark="#06AE56",
106
- button_primary_text_color="#FFFFFF",
107
- button_primary_text_color_dark="#FFFFFF",
108
- button_secondary_background_fill="#F2F2F2",
109
- button_secondary_background_fill_dark="#2B2B2B",
110
- button_secondary_text_color="#393939",
111
- button_secondary_text_color_dark="#FFFFFF",
112
- # background_fill_primary="#F7F7F7",
113
- # background_fill_primary_dark="#1F1F1F",
114
- block_title_text_color="*primary_500",
115
- block_title_background_fill = "*primary_100",
116
- input_background_fill="#F6F6F6",
117
- ),
118
  ) as demo:
119
  history = gr.State([])
120
  token_count = gr.State([])
@@ -156,7 +100,7 @@ with gr.Blocks(
156
  value=hide_middle_chars(my_api_key),
157
  type="password",
158
  visible=not HIDE_MY_KEY,
159
- label="API-Key",
160
  )
161
  model_select_dropdown = gr.Dropdown(
162
  label="选择模型", choices=MODELS, multiselect=False, value=MODELS[0]
@@ -165,7 +109,7 @@ with gr.Blocks(
165
  label="实时传输回答", value=True, visible=enable_streaming_option
166
  )
167
  use_websearch_checkbox = gr.Checkbox(label="使用在线搜索", value=False)
168
- index_files = gr.File(label="上传索引文件", type="file", multiple=True)
169
 
170
  with gr.Tab(label="Prompt"):
171
  systemPromptTxt = gr.Textbox(
@@ -286,6 +230,7 @@ with gr.Blocks(
286
  use_streaming_checkbox,
287
  model_select_dropdown,
288
  use_websearch_checkbox,
 
289
  ],
290
  [chatbot, history, status_display, token_count],
291
  show_progress=True,
@@ -306,6 +251,7 @@ with gr.Blocks(
306
  use_streaming_checkbox,
307
  model_select_dropdown,
308
  use_websearch_checkbox,
 
309
  ],
310
  [chatbot, history, status_display, token_count],
311
  show_progress=True,
 
1
  # -*- coding:utf-8 -*-
 
2
  import os
3
  import logging
4
  import sys
5
+
6
+ import gradio as gr
7
+
8
  from utils import *
9
  from presets import *
10
+ from overwrites import *
11
+ from chat_func import *
12
 
13
  logging.basicConfig(
14
+ level=logging.DEBUG,
15
  format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
16
  )
17
 
 
52
  authflag = True
53
 
54
  gr.Chatbot.postprocess = postprocess
55
+ PromptHelper.compact_text_chunks = compact_text_chunks
56
 
57
  with open("custom.css", "r", encoding="utf-8") as f:
58
  customCSS = f.read()
59
 
60
  with gr.Blocks(
61
  css=customCSS,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  ) as demo:
63
  history = gr.State([])
64
  token_count = gr.State([])
 
100
  value=hide_middle_chars(my_api_key),
101
  type="password",
102
  visible=not HIDE_MY_KEY,
103
+ label="API-Key(按Enter提交)",
104
  )
105
  model_select_dropdown = gr.Dropdown(
106
  label="选择模型", choices=MODELS, multiselect=False, value=MODELS[0]
 
109
  label="实时传输回答", value=True, visible=enable_streaming_option
110
  )
111
  use_websearch_checkbox = gr.Checkbox(label="使用在线搜索", value=False)
112
+ index_files = gr.Files(label="上传索引文件", type="file", multiple=True)
113
 
114
  with gr.Tab(label="Prompt"):
115
  systemPromptTxt = gr.Textbox(
 
230
  use_streaming_checkbox,
231
  model_select_dropdown,
232
  use_websearch_checkbox,
233
+ index_files
234
  ],
235
  [chatbot, history, status_display, token_count],
236
  show_progress=True,
 
251
  use_streaming_checkbox,
252
  model_select_dropdown,
253
  use_websearch_checkbox,
254
+ index_files
255
  ],
256
  [chatbot, history, status_display, token_count],
257
  show_progress=True,
presets.py CHANGED
@@ -1,4 +1,23 @@
1
  # -*- coding:utf-8 -*-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  title = """<h1 align="left" style="min-width:200px; margin-top:0;">川虎ChatGPT 🚀</h1>"""
3
  description = """\
4
  <div align="center" style="margin:16px 0">
@@ -12,6 +31,7 @@ description = """\
12
  """
13
 
14
  summarize_prompt = "你是谁?我们刚才聊了什么?" # 总结对话时的 prompt
 
15
  MODELS = [
16
  "gpt-3.5-turbo",
17
  "gpt-3.5-turbo-0301",
@@ -21,7 +41,8 @@ MODELS = [
21
  "gpt-4-32k-0314",
22
  ] # 可选的模型
23
 
24
- websearch_prompt = """\
 
25
  Web search results:
26
 
27
  {web_results}
@@ -31,18 +52,29 @@ Instructions: Using the provided web search results, write a comprehensive reply
31
  Query: {query}
32
  Reply in 中文"""
33
 
34
- # 错误信息
35
- standard_error_msg = "☹️发生了错误:" # 错误信息的标准前缀
36
- error_retrieve_prompt = "请检查网络连接,或者API-Key是否有效。" # 获取对话时发生错误
37
- connection_timeout_prompt = "连接超时,无法获取对话。" # 连接超时
38
- read_timeout_prompt = "读取超时,无法获取对话。" # 读取超时
39
- proxy_error_prompt = "代理错误,无法获取对话。" # 代理错误
40
- ssl_error_prompt = "SSL错误,无法获取对话。" # SSL 错误
41
- no_apikey_msg = "API key长度不是51位,请检查是否输入正确。" # API key 长度不足 51
 
 
 
 
 
42
 
43
- max_token_streaming = 3500 # 流式对话时的最大 token 数
44
- timeout_streaming = 30 # 流式对话时的超时时间
45
- max_token_all = 3500 # 非流式对话时的最大 token
46
- timeout_all = 200 # 非流式对话时的超时时间
47
- enable_streaming_option = True # 是否启用选择选择是否实时显示回答的勾选框
48
- HIDE_MY_KEY = False # 如果你想在UI中隐藏你的 API 密钥,将此值设置为 True
 
 
 
 
 
 
 
1
  # -*- coding:utf-8 -*-
2
+ # 错误信息
3
+ standard_error_msg = "☹️发生了错误:" # 错误信息的标准前缀
4
+ error_retrieve_prompt = "请检查网络连接,或者API-Key是否有效。" # 获取对话时发生错误
5
+ connection_timeout_prompt = "连接超时,无法获取对话。" # 连接超时
6
+ read_timeout_prompt = "读取超时,无法获取对话。" # 读取超时
7
+ proxy_error_prompt = "代理错误,无法获取对话。" # 代理错误
8
+ ssl_error_prompt = "SSL错误,无法获取对话。" # SSL 错误
9
+ no_apikey_msg = "API key长度不是51位,请检查是否输入正确。" # API key 长度不足 51 位
10
+
11
+ max_token_streaming = 3500 # 流式对话时的最大 token 数
12
+ timeout_streaming = 30 # 流式对话时的超时时间
13
+ max_token_all = 3500 # 非流式对话时的最大 token 数
14
+ timeout_all = 200 # 非流式对话时的超时时间
15
+ enable_streaming_option = True # 是否启用选择选择是否实时显示回答的勾选框
16
+ HIDE_MY_KEY = False # 如果你想在UI中隐藏你的 API 密钥,将此值设置为 True
17
+
18
+ SIM_K = 5
19
+ INDEX_QUERY_TEMPRATURE = 1.0
20
+
21
  title = """<h1 align="left" style="min-width:200px; margin-top:0;">川虎ChatGPT 🚀</h1>"""
22
  description = """\
23
  <div align="center" style="margin:16px 0">
 
31
  """
32
 
33
  summarize_prompt = "你是谁?我们刚才聊了什么?" # 总结对话时的 prompt
34
+
35
  MODELS = [
36
  "gpt-3.5-turbo",
37
  "gpt-3.5-turbo-0301",
 
41
  "gpt-4-32k-0314",
42
  ] # 可选的模型
43
 
44
+
45
+ WEBSEARCH_PTOMPT_TEMPLATE = """\
46
  Web search results:
47
 
48
  {web_results}
 
52
  Query: {query}
53
  Reply in 中文"""
54
 
55
+ PROMPT_TEMPLATE = """\
56
+ Context information is below.
57
+ ---------------------
58
+ {context_str}
59
+ ---------------------
60
+ Current date: {current_date}.
61
+ Using the provided context information, write a comprehensive reply to the given query.
62
+ Make sure to cite results using [number] notation after the reference.
63
+ If the provided context information refer to multiple subjects with the same name, write separate answers for each subject.
64
+ Use prior knowledge only if the given context didn't provide enough information.
65
+ Answer the question: {query_str}
66
+ Reply in 中文
67
+ """
68
 
69
+ REFINE_TEMPLATE = """\
70
+ The original question is as follows: {query_str}
71
+ We have provided an existing answer: {existing_answer}
72
+ We have the opportunity to refine the existing answer
73
+ (only if needed) with some more context below.
74
+ ------------
75
+ {context_msg}
76
+ ------------
77
+ Given the new context, refine the original answer to better
78
+ Answer in the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch.
79
+ If the context isn't useful, return the original answer.
80
+ """
requirements.txt CHANGED
@@ -6,4 +6,6 @@ socksio
6
  tqdm
7
  colorama
8
  duckduckgo_search
9
- Pygments
 
 
 
6
  tqdm
7
  colorama
8
  duckduckgo_search
9
+ Pygments
10
+ llama_index
11
+ langchain
utils.py CHANGED
@@ -3,23 +3,16 @@ from __future__ import annotations
3
  from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
4
  import logging
5
  import json
6
- import gradio as gr
7
-
8
- # import openai
9
  import os
10
- import traceback
11
- import requests
12
-
13
- # import markdown
14
  import csv
15
- import mdtex2html
 
16
  from pypinyin import lazy_pinyin
17
- from presets import *
18
  import tiktoken
19
- from tqdm import tqdm
20
- import colorama
21
- from duckduckgo_search import ddg
22
- import datetime
23
 
24
  # logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s")
25
 
@@ -37,27 +30,6 @@ HISTORY_DIR = "history"
37
  TEMPLATES_DIR = "templates"
38
 
39
 
40
- def postprocess(
41
- self, y: List[Tuple[str | None, str | None]]
42
- ) -> List[Tuple[str | None, str | None]]:
43
- """
44
- Parameters:
45
- y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
46
- Returns:
47
- List of tuples representing the message and response. Each message and response will be a string of HTML.
48
- """
49
- if y is None:
50
- return []
51
- for i, (message, response) in enumerate(y):
52
- y[i] = (
53
- # None if message is None else markdown.markdown(message),
54
- # None if response is None else markdown.markdown(response),
55
- None if message is None else message,
56
- None if response is None else mdtex2html.convert(response, extensions=['fenced_code','codehilite','tables']),
57
- )
58
- return y
59
-
60
-
61
  def count_token(message):
62
  encoding = tiktoken.get_encoding("cl100k_base")
63
  input_str = f"role: {message['role']}, content: {message['content']}"
@@ -102,389 +74,6 @@ def construct_token_message(token, stream=False):
102
  return f"Token 计数: {token}"
103
 
104
 
105
- def get_response(
106
- openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model
107
- ):
108
- headers = {
109
- "Content-Type": "application/json",
110
- "Authorization": f"Bearer {openai_api_key}",
111
- }
112
-
113
- history = [construct_system(system_prompt), *history]
114
-
115
- payload = {
116
- "model": selected_model,
117
- "messages": history, # [{"role": "user", "content": f"{inputs}"}],
118
- "temperature": temperature, # 1.0,
119
- "top_p": top_p, # 1.0,
120
- "n": 1,
121
- "stream": stream,
122
- "presence_penalty": 0,
123
- "frequency_penalty": 0,
124
- }
125
- if stream:
126
- timeout = timeout_streaming
127
- else:
128
- timeout = timeout_all
129
-
130
- # 获取环境变量中的代理设置
131
- http_proxy = os.environ.get("HTTP_PROXY") or os.environ.get("http_proxy")
132
- https_proxy = os.environ.get("HTTPS_PROXY") or os.environ.get("https_proxy")
133
-
134
- # 如果存在代理设置,使用它们
135
- proxies = {}
136
- if http_proxy:
137
- logging.info(f"Using HTTP proxy: {http_proxy}")
138
- proxies["http"] = http_proxy
139
- if https_proxy:
140
- logging.info(f"Using HTTPS proxy: {https_proxy}")
141
- proxies["https"] = https_proxy
142
-
143
- # 如果有代理,使用代理发送请求,否则使用默认设置发送请求
144
- if proxies:
145
- response = requests.post(
146
- API_URL,
147
- headers=headers,
148
- json=payload,
149
- stream=True,
150
- timeout=timeout,
151
- proxies=proxies,
152
- )
153
- else:
154
- response = requests.post(
155
- API_URL,
156
- headers=headers,
157
- json=payload,
158
- stream=True,
159
- timeout=timeout,
160
- )
161
- return response
162
-
163
-
164
- def stream_predict(
165
- openai_api_key,
166
- system_prompt,
167
- history,
168
- inputs,
169
- chatbot,
170
- all_token_counts,
171
- top_p,
172
- temperature,
173
- selected_model,
174
- ):
175
- def get_return_value():
176
- return chatbot, history, status_text, all_token_counts
177
-
178
- logging.info("实时回答模式")
179
- partial_words = ""
180
- counter = 0
181
- status_text = "开始实时传输回答……"
182
- history.append(construct_user(inputs))
183
- history.append(construct_assistant(""))
184
- chatbot.append((parse_text(inputs), ""))
185
- user_token_count = 0
186
- if len(all_token_counts) == 0:
187
- system_prompt_token_count = count_token(construct_system(system_prompt))
188
- user_token_count = (
189
- count_token(construct_user(inputs)) + system_prompt_token_count
190
- )
191
- else:
192
- user_token_count = count_token(construct_user(inputs))
193
- all_token_counts.append(user_token_count)
194
- logging.info(f"输入token计数: {user_token_count}")
195
- yield get_return_value()
196
- try:
197
- response = get_response(
198
- openai_api_key,
199
- system_prompt,
200
- history,
201
- temperature,
202
- top_p,
203
- True,
204
- selected_model,
205
- )
206
- except requests.exceptions.ConnectTimeout:
207
- status_text = (
208
- standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
209
- )
210
- yield get_return_value()
211
- return
212
- except requests.exceptions.ReadTimeout:
213
- status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt
214
- yield get_return_value()
215
- return
216
-
217
- yield get_return_value()
218
- error_json_str = ""
219
-
220
- for chunk in tqdm(response.iter_lines()):
221
- if counter == 0:
222
- counter += 1
223
- continue
224
- counter += 1
225
- # check whether each line is non-empty
226
- if chunk:
227
- chunk = chunk.decode()
228
- chunklength = len(chunk)
229
- try:
230
- chunk = json.loads(chunk[6:])
231
- except json.JSONDecodeError:
232
- logging.info(chunk)
233
- error_json_str += chunk
234
- status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}"
235
- yield get_return_value()
236
- continue
237
- # decode each line as response data is in bytes
238
- if chunklength > 6 and "delta" in chunk["choices"][0]:
239
- finish_reason = chunk["choices"][0]["finish_reason"]
240
- status_text = construct_token_message(
241
- sum(all_token_counts), stream=True
242
- )
243
- if finish_reason == "stop":
244
- yield get_return_value()
245
- break
246
- try:
247
- partial_words = (
248
- partial_words + chunk["choices"][0]["delta"]["content"]
249
- )
250
- except KeyError:
251
- status_text = (
252
- standard_error_msg
253
- + "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: "
254
- + str(sum(all_token_counts))
255
- )
256
- yield get_return_value()
257
- break
258
- history[-1] = construct_assistant(partial_words)
259
- chatbot[-1] = (parse_text(inputs), parse_text(partial_words))
260
- all_token_counts[-1] += 1
261
- yield get_return_value()
262
-
263
-
264
- def predict_all(
265
- openai_api_key,
266
- system_prompt,
267
- history,
268
- inputs,
269
- chatbot,
270
- all_token_counts,
271
- top_p,
272
- temperature,
273
- selected_model,
274
- ):
275
- logging.info("一次性回答模式")
276
- history.append(construct_user(inputs))
277
- history.append(construct_assistant(""))
278
- chatbot.append((parse_text(inputs), ""))
279
- all_token_counts.append(count_token(construct_user(inputs)))
280
- try:
281
- response = get_response(
282
- openai_api_key,
283
- system_prompt,
284
- history,
285
- temperature,
286
- top_p,
287
- False,
288
- selected_model,
289
- )
290
- except requests.exceptions.ConnectTimeout:
291
- status_text = (
292
- standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
293
- )
294
- return chatbot, history, status_text, all_token_counts
295
- except requests.exceptions.ProxyError:
296
- status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt
297
- return chatbot, history, status_text, all_token_counts
298
- except requests.exceptions.SSLError:
299
- status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt
300
- return chatbot, history, status_text, all_token_counts
301
- response = json.loads(response.text)
302
- content = response["choices"][0]["message"]["content"]
303
- history[-1] = construct_assistant(content)
304
- chatbot[-1] = (parse_text(inputs), parse_text(content))
305
- total_token_count = response["usage"]["total_tokens"]
306
- all_token_counts[-1] = total_token_count - sum(all_token_counts)
307
- status_text = construct_token_message(total_token_count)
308
- return chatbot, history, status_text, all_token_counts
309
-
310
-
311
- def predict(
312
- openai_api_key,
313
- system_prompt,
314
- history,
315
- inputs,
316
- chatbot,
317
- all_token_counts,
318
- top_p,
319
- temperature,
320
- stream=False,
321
- selected_model=MODELS[0],
322
- use_websearch_checkbox=False,
323
- should_check_token_count=True,
324
- ): # repetition_penalty, top_k
325
- logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
326
- if use_websearch_checkbox:
327
- results = ddg(inputs, max_results=3)
328
- web_results = []
329
- for idx, result in enumerate(results):
330
- logging.info(f"搜索结果{idx + 1}:{result}")
331
- web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}')
332
- web_results = "\n\n".join(web_results)
333
- today = datetime.datetime.today().strftime("%Y-%m-%d")
334
- inputs = (
335
- websearch_prompt.replace("{current_date}", today)
336
- .replace("{query}", inputs)
337
- .replace("{web_results}", web_results)
338
- )
339
- if len(openai_api_key) != 51:
340
- status_text = standard_error_msg + no_apikey_msg
341
- logging.info(status_text)
342
- chatbot.append((parse_text(inputs), ""))
343
- if len(history) == 0:
344
- history.append(construct_user(inputs))
345
- history.append("")
346
- all_token_counts.append(0)
347
- else:
348
- history[-2] = construct_user(inputs)
349
- yield chatbot, history, status_text, all_token_counts
350
- return
351
- if stream:
352
- yield chatbot, history, "开始生成回答……", all_token_counts
353
- if stream:
354
- logging.info("使用流式传输")
355
- iter = stream_predict(
356
- openai_api_key,
357
- system_prompt,
358
- history,
359
- inputs,
360
- chatbot,
361
- all_token_counts,
362
- top_p,
363
- temperature,
364
- selected_model,
365
- )
366
- for chatbot, history, status_text, all_token_counts in iter:
367
- yield chatbot, history, status_text, all_token_counts
368
- else:
369
- logging.info("不使用流式传输")
370
- chatbot, history, status_text, all_token_counts = predict_all(
371
- openai_api_key,
372
- system_prompt,
373
- history,
374
- inputs,
375
- chatbot,
376
- all_token_counts,
377
- top_p,
378
- temperature,
379
- selected_model,
380
- )
381
- yield chatbot, history, status_text, all_token_counts
382
- logging.info(f"传输完毕。当前token计数为{all_token_counts}")
383
- if len(history) > 1 and history[-1]["content"] != inputs:
384
- logging.info(
385
- "回答为:"
386
- + colorama.Fore.BLUE
387
- + f"{history[-1]['content']}"
388
- + colorama.Style.RESET_ALL
389
- )
390
- if stream:
391
- max_token = max_token_streaming
392
- else:
393
- max_token = max_token_all
394
- if sum(all_token_counts) > max_token and should_check_token_count:
395
- status_text = f"精简token中{all_token_counts}/{max_token}"
396
- logging.info(status_text)
397
- yield chatbot, history, status_text, all_token_counts
398
- iter = reduce_token_size(
399
- openai_api_key,
400
- system_prompt,
401
- history,
402
- chatbot,
403
- all_token_counts,
404
- top_p,
405
- temperature,
406
- stream=False,
407
- selected_model=selected_model,
408
- hidden=True,
409
- )
410
- for chatbot, history, status_text, all_token_counts in iter:
411
- status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}"
412
- yield chatbot, history, status_text, all_token_counts
413
-
414
-
415
- def retry(
416
- openai_api_key,
417
- system_prompt,
418
- history,
419
- chatbot,
420
- token_count,
421
- top_p,
422
- temperature,
423
- stream=False,
424
- selected_model=MODELS[0],
425
- ):
426
- logging.info("重试中……")
427
- if len(history) == 0:
428
- yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
429
- return
430
- history.pop()
431
- inputs = history.pop()["content"]
432
- token_count.pop()
433
- iter = predict(
434
- openai_api_key,
435
- system_prompt,
436
- history,
437
- inputs,
438
- chatbot,
439
- token_count,
440
- top_p,
441
- temperature,
442
- stream=stream,
443
- selected_model=selected_model,
444
- )
445
- logging.info("重试完毕")
446
- for x in iter:
447
- yield x
448
-
449
-
450
- def reduce_token_size(
451
- openai_api_key,
452
- system_prompt,
453
- history,
454
- chatbot,
455
- token_count,
456
- top_p,
457
- temperature,
458
- stream=False,
459
- selected_model=MODELS[0],
460
- hidden=False,
461
- ):
462
- logging.info("开始减少token数量……")
463
- iter = predict(
464
- openai_api_key,
465
- system_prompt,
466
- history,
467
- summarize_prompt,
468
- chatbot,
469
- token_count,
470
- top_p,
471
- temperature,
472
- stream=stream,
473
- selected_model=selected_model,
474
- should_check_token_count=False,
475
- )
476
- logging.info(f"chatbot: {chatbot}")
477
- for chatbot, history, status_text, previous_token_count in iter:
478
- history = history[-2:]
479
- token_count = previous_token_count[-1:]
480
- if hidden:
481
- chatbot.pop()
482
- yield chatbot, history, construct_token_message(
483
- sum(token_count), stream=stream
484
- ), token_count
485
- logging.info("减少token数量完毕")
486
-
487
-
488
  def delete_last_conversation(chatbot, history, previous_token_count):
489
  if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]:
490
  logging.info("由于包含报错信息,只删除chatbot记录")
@@ -643,6 +232,7 @@ def reset_state():
643
  def reset_textbox():
644
  return gr.update(value="")
645
 
 
646
  def reset_default():
647
  global API_URL
648
  API_URL = "https://api.openai.com/v1/chat/completions"
@@ -650,6 +240,7 @@ def reset_default():
650
  os.environ.pop("https_proxy", None)
651
  return gr.update(value=API_URL), gr.update(value=""), "API URL 和代理已重置"
652
 
 
653
  def change_api_url(url):
654
  global API_URL
655
  API_URL = url
@@ -657,22 +248,37 @@ def change_api_url(url):
657
  logging.info(msg)
658
  return msg
659
 
 
660
  def change_proxy(proxy):
661
  os.environ["HTTPS_PROXY"] = proxy
662
  msg = f"代理更改为了{proxy}"
663
  logging.info(msg)
664
  return msg
665
 
 
666
  def hide_middle_chars(s):
667
  if len(s) <= 8:
668
  return s
669
  else:
670
  head = s[:4]
671
  tail = s[-4:]
672
- hidden = '*' * (len(s) - 8)
673
  return head + hidden + tail
674
 
 
675
  def submit_key(key):
 
676
  msg = f"API密钥更改为了{hide_middle_chars(key)}"
677
  logging.info(msg)
678
  return key, msg
 
 
 
 
 
 
 
 
 
 
 
 
3
  from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
4
  import logging
5
  import json
 
 
 
6
  import os
7
+ import datetime
8
+ import hashlib
 
 
9
  import csv
10
+
11
+ import gradio as gr
12
  from pypinyin import lazy_pinyin
 
13
  import tiktoken
14
+
15
+ from presets import *
 
 
16
 
17
  # logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s")
18
 
 
30
  TEMPLATES_DIR = "templates"
31
 
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  def count_token(message):
34
  encoding = tiktoken.get_encoding("cl100k_base")
35
  input_str = f"role: {message['role']}, content: {message['content']}"
 
74
  return f"Token 计数: {token}"
75
 
76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  def delete_last_conversation(chatbot, history, previous_token_count):
78
  if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]:
79
  logging.info("由于包含报错信息,只删除chatbot记录")
 
232
  def reset_textbox():
233
  return gr.update(value="")
234
 
235
+
236
  def reset_default():
237
  global API_URL
238
  API_URL = "https://api.openai.com/v1/chat/completions"
 
240
  os.environ.pop("https_proxy", None)
241
  return gr.update(value=API_URL), gr.update(value=""), "API URL 和代理已重置"
242
 
243
+
244
  def change_api_url(url):
245
  global API_URL
246
  API_URL = url
 
248
  logging.info(msg)
249
  return msg
250
 
251
+
252
  def change_proxy(proxy):
253
  os.environ["HTTPS_PROXY"] = proxy
254
  msg = f"代理更改为了{proxy}"
255
  logging.info(msg)
256
  return msg
257
 
258
+
259
  def hide_middle_chars(s):
260
  if len(s) <= 8:
261
  return s
262
  else:
263
  head = s[:4]
264
  tail = s[-4:]
265
+ hidden = "*" * (len(s) - 8)
266
  return head + hidden + tail
267
 
268
+
269
  def submit_key(key):
270
+ key = key.strip()
271
  msg = f"API密钥更改为了{hide_middle_chars(key)}"
272
  logging.info(msg)
273
  return key, msg
274
+
275
+
276
+ def sha1sum(filename):
277
+ sha1 = hashlib.sha1()
278
+ sha1.update(filename.encode("utf-8"))
279
+ return sha1.hexdigest()
280
+
281
+
282
+ def replace_today(prompt):
283
+ today = datetime.datetime.today().strftime("%Y-%m-%d")
284
+ return prompt.replace("{current_date}", today)