Spaces:
Runtime error
Runtime error
omerXfaruq
commited on
Commit
·
cf029f9
1
Parent(s):
a94c49d
tweaks
Browse files- app.py +21 -27
- requirements.txt +2 -1
app.py
CHANGED
@@ -2,27 +2,22 @@ import gradio as gr
|
|
2 |
import os
|
3 |
from torchvision.transforms import Resize
|
4 |
from upstash_vector import Index
|
5 |
-
|
|
|
6 |
|
7 |
index = Index.from_env()
|
8 |
-
print(os.environ
|
9 |
-
print(os.environ
|
10 |
|
11 |
-
resize_transform = Resize((250,250))
|
12 |
-
|
13 |
-
|
14 |
-
from transformers import AutoFeatureExtractor, AutoModel
|
15 |
|
16 |
model_ckpt = "google/vit-base-patch16-224-in21k"
|
17 |
extractor = AutoFeatureExtractor.from_pretrained(model_ckpt)
|
18 |
model = AutoModel.from_pretrained(model_ckpt)
|
19 |
hidden_dim = model.config.hidden_size
|
20 |
|
21 |
-
from datasets import load_dataset
|
22 |
-
|
23 |
dataset = load_dataset("HengJi/human_faces")
|
24 |
|
25 |
-
|
26 |
with gr.Blocks() as demo:
|
27 |
gr.Markdown(
|
28 |
"""
|
@@ -39,16 +34,16 @@ with gr.Blocks() as demo:
|
|
39 |
with gr.Column(scale=3):
|
40 |
output_image = gr.Gallery()
|
41 |
|
42 |
-
|
43 |
@input_image.upload(inputs=input_image, outputs=output_image)
|
44 |
-
def find_similar_faces(image):
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
with gr.Tab("Advanced"):
|
53 |
with gr.Row():
|
54 |
with gr.Column(scale=1):
|
@@ -61,13 +56,12 @@ with gr.Blocks() as demo:
|
|
61 |
|
62 |
@adv_input_image.upload(inputs=[adv_input_image, adv_image_count], outputs=[adv_output_image])
|
63 |
def find_similar_faces(image, count):
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
|
72 |
if __name__ == "__main__":
|
73 |
-
demo.launch(debug=True)
|
|
|
2 |
import os
|
3 |
from torchvision.transforms import Resize
|
4 |
from upstash_vector import Index
|
5 |
+
from datasets import load_dataset
|
6 |
+
from transformers import AutoFeatureExtractor, AutoModel
|
7 |
|
8 |
index = Index.from_env()
|
9 |
+
print(os.environ["UPSTASH_VECTOR_REST_URL"])
|
10 |
+
print(os.environ["UPSTASH_VECTOR_REST_TOKEN"])
|
11 |
|
12 |
+
resize_transform = Resize((250, 250))
|
|
|
|
|
|
|
13 |
|
14 |
model_ckpt = "google/vit-base-patch16-224-in21k"
|
15 |
extractor = AutoFeatureExtractor.from_pretrained(model_ckpt)
|
16 |
model = AutoModel.from_pretrained(model_ckpt)
|
17 |
hidden_dim = model.config.hidden_size
|
18 |
|
|
|
|
|
19 |
dataset = load_dataset("HengJi/human_faces")
|
20 |
|
|
|
21 |
with gr.Blocks() as demo:
|
22 |
gr.Markdown(
|
23 |
"""
|
|
|
34 |
with gr.Column(scale=3):
|
35 |
output_image = gr.Gallery()
|
36 |
|
37 |
+
|
38 |
@input_image.upload(inputs=input_image, outputs=output_image)
|
39 |
+
def find_similar_faces(image):
|
40 |
+
resized_image = resize_transform(image)
|
41 |
+
inputs = extractor(images=resized_image, return_tensors="pt")
|
42 |
+
outputs = model(**inputs)
|
43 |
+
embed = outputs.last_hidden_state[0][0]
|
44 |
+
result = index.query(vector=embed.tolist(), top_k=3)
|
45 |
+
return [dataset["train"][int(vector.id[3:])]["image"] for vector in result]
|
46 |
+
|
47 |
with gr.Tab("Advanced"):
|
48 |
with gr.Row():
|
49 |
with gr.Column(scale=1):
|
|
|
56 |
|
57 |
@adv_input_image.upload(inputs=[adv_input_image, adv_image_count], outputs=[adv_output_image])
|
58 |
def find_similar_faces(image, count):
|
59 |
+
resized_image = resize_transform(image)
|
60 |
+
inputs = extractor(images=resized_image, return_tensors="pt")
|
61 |
+
outputs = model(**inputs)
|
62 |
+
embed = outputs.last_hidden_state[0][0]
|
63 |
+
result = index.query(vector=embed.tolist(), top_k=min(count, 9))
|
64 |
+
return [dataset["train"][int(vector.id[3:])]["image"] for vector in result]
|
|
|
65 |
|
66 |
if __name__ == "__main__":
|
67 |
+
demo.launch(debug=True)
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
torchvision
|
2 |
transformers
|
3 |
datasets
|
4 |
-
upstash-vector
|
|
|
|
1 |
torchvision
|
2 |
transformers
|
3 |
datasets
|
4 |
+
upstash-vector
|
5 |
+
gradio
|