omer11a's picture
Fixed some stuff
97abb9e
raw
history blame
19.1 kB
import spaces
import gradio as gr
import torch
import nltk
import numpy as np
from PIL import Image, ImageDraw
from diffusers import DDIMScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from pipeline_stable_diffusion_xl_opt import StableDiffusionXLPipeline
from injection_utils import register_attention_editor_diffusers
from bounded_attention import BoundedAttention
from pytorch_lightning import seed_everything
REMOTE_MODEL_PATH = "stabilityai/stable-diffusion-xl-base-1.0"
LOCAL_MODEL_PATH = "./model"
RESOLUTION = 256
MIN_SIZE = 0.01
WHITE = 255
COLORS = ["red", "blue", "green", "orange", "purple", "turquoise", "olive"]
PROMPT1 = "a ginger kitten and a gray puppy in a yard"
SUBJECT_SUB_PROMPTS1 = "ginger kitten;gray puppy"
SUBJECT_TOKEN_INDICES1 = "2,3;6,7"
FILTER_TOKEN_INDICES1 = "1,4,5,8,9"
NUM_TOKENS1 = "10"
PROMPT2 = "3 D Pixar animation of a cute unicorn and a pink hedgehog and a nerdy owl traveling in a magical forest"
PROMPT3 = "science fiction movie poster with an astronaut and a robot and a green alien and a spaceship"
PROMPT4 = "a realistic photo of a highway with a semi trailer and a concrete mixer and a helicopter"
PROMPT5 = "a golden retriever and a german shepherd and a boston terrier and an english bulldog and a border collie in a pool"
EXAMPLE_BOXES = {
PROMPT1: [
[0.15, 0.2, 0.45, 0.9],
[0.55, 0.25, 0.85, 0.95],
],
PROMPT2 : [
[0.35, 0.4, 0.65, 0.9],
[0, 0.6, 0.3, 0.9],
[0.7, 0.55, 1, 0.85]
],
PROMPT3: [
[0.4, 0.45, 0.6, 0.95],
[0.2, 0.3, 0.4, 0.85],
[0.6, 0.3, 0.8, 0.85],
[0.1, 0, 0.9, 0.3]
],
PROMPT4: [
[0.05, 0.5, 0.45, 0.85],
[0.55, 0.6, 0.95, 0.85],
[0.3, 0.2, 0.7, 0.45],
],
PROMPT5: [
[0, 0.5, 0.2, 0.8],
[0.2, 0.2, 0.4, 0.5],
[0.4, 0.5, 0.6, 0.8],
[0.6, 0.2, 0.8, 0.5],
[0.8, 0.5, 1, 0.8]
],
}
CSS = """
#paper-info a {
color:#008AD7;
text-decoration: none;
}
#paper-info a:hover {
cursor: pointer;
text-decoration: none;
}
.tooltip {
color: #555;
position: relative;
display: inline-block;
cursor: pointer;
}
.tooltip .tooltiptext {
visibility: hidden;
width: 400px;
background-color: #555;
color: #fff;
text-align: center;
padding: 5px;
border-radius: 5px;
position: absolute;
z-index: 1; /* Set z-index to 1 */
left: 10px;
top: 100%;
opacity: 0;
transition: opacity 0.3s;
}
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;
z-index: 9999; /* Set a high z-index value when hovering */
}
"""
DESCRIPTION = """
<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px">Bounded Attention</span>
<br>
<span style="font-size: 18px" id="paper-info">
[<a href="https://omer11a.github.io/bounded-attention/" target="_blank">Project Page</a>]
[<a href="https://arxiv.org/abs/2403.16990" target="_blank">Paper</a>]
[<a href="https://github.com/omer11a/bounded-attention" target="_blank">GitHub</a>]
</span>
</p>
"""
COPY_LINK = """
<a href="https://huggingface.co/spaces/omer11a/bounded-attention?duplicate=true">
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space">
</a>
Duplicate this space to generate more samples without waiting in queue.
<br>
To get better results, increase the number of guidance steps to 15.
"""
ADVANCED_OPTION_DESCRIPTION = """
<div class="tooltip" >Number of guidance steps &#9432
<span class="tooltiptext">The number of timesteps in which to perform guidance. Recommended value is 15, but increasing this will also increases the runtime.</span>
</div>
<div class="tooltip">Batch size &#9432
<span class="tooltiptext">The number of images to generate.</span>
</div>
<div class="tooltip">Initial step size &#9432
<span class="tooltiptext">The initial step size of the linear step size scheduler when performing guidance.</span>
</div>
<div class="tooltip">Final step size &#9432
<span class="tooltiptext">The final step size of the linear step size scheduler when performing guidance.</span>
</div>
<div class="tooltip">First refinement step &#9432
<span class="tooltiptext">The timestep from which subject mask refinement is performed.</span>
</div>
<div class="tooltip">Number of self-attention clusters per subject &#9432
<span class="tooltiptext">The number of clusters computed when clustering the self-attention maps (#clusters = #subject x #clusters_per_subject). Changing this value might improve semantics (adherence to the prompt), especially when the subjects exceed their bounding boxes.</span>
</div>
<div class="tooltip">Cross-attention loss scale factor &#9432
<span class="tooltiptext">The scale factor of the cross-attention loss term. Increasing it will improve semantic control (adherence to the prompt), but may reduce image quality.</span>
</div>
<div class="tooltip">Self-attention loss scale factor &#9432
<span class="tooltiptext">The scale factor of the self-attention loss term. Increasing it will improve layout control (adherence to the bounding boxes), but may reduce image quality.</span>
</div>
<div class="tooltip" >Number of Gradient Descent iterations per timestep &#9432
<span class="tooltiptext">The number of Gradient Descent iterations for each timestep when performing guidance.</span>
</div>
<div class="tooltip" >Loss Threshold &#9432
<span class="tooltiptext">If the loss is below the threshold, Gradient Descent stops for that timestep. </span>
</div>
<div class="tooltip">Classifier-free guidance scale &#9432
<span class="tooltiptext">The scale factor of classifier-free guidance.</span>
</div>
"""
FOOTNOTE = """
<p>The source code of this demo is based on the <a href="https://huggingface.co/spaces/gligen/demo/tree/main">GLIGEN demo</a>.</p>
"""
def inference(
boxes,
prompts,
subject_sub_prompts,
subject_token_indices,
filter_token_indices,
num_tokens,
init_step_size,
final_step_size,
first_refinement_step,
num_clusters_per_subject,
cross_loss_scale,
self_loss_scale,
classifier_free_guidance_scale,
num_iterations,
loss_threshold,
num_guidance_steps,
seed,
):
if not torch.cuda.is_available():
raise gr.Error("cuda is not available")
device = torch.device("cuda")
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
model = StableDiffusionXLPipeline.from_pretrained(LOCAL_MODEL_PATH, scheduler=scheduler, torch_dtype=torch.float16, device_map="auto")
model.to(device)
model.unet.set_attn_processor(AttnProcessor2_0())
model.enable_sequential_cpu_offload()
seed_everything(seed)
start_code = torch.randn([len(prompts), 4, 128, 128], device=device)
eos_token_index = None if num_tokens is None else num_tokens + 1
editor = BoundedAttention(
boxes,
prompts,
list(range(70, 82)),
list(range(70, 82)),
subject_sub_prompts=subject_sub_prompts,
subject_token_indices=subject_token_indices,
filter_token_indices=filter_token_indices,
eos_token_index=eos_token_index,
cross_loss_coef=cross_loss_scale,
self_loss_coef=self_loss_scale,
max_guidance_iter=num_guidance_steps,
max_guidance_iter_per_step=num_iterations,
start_step_size=init_step_size,
end_step_size=final_step_size,
loss_stopping_value=loss_threshold,
min_clustering_step=first_refinement_step,
num_clusters_per_box=num_clusters_per_subject,
max_resolution=32,
)
register_attention_editor_diffusers(model, editor)
return model(prompts, latents=start_code, guidance_scale=classifier_free_guidance_scale).images
@spaces.GPU(duration=340)
def generate(
prompt,
subject_sub_prompts,
subject_token_indices,
filter_token_indices,
num_tokens,
init_step_size,
final_step_size,
first_refinement_step,
num_clusters_per_subject,
cross_loss_scale,
self_loss_scale,
classifier_free_guidance_scale,
batch_size,
num_iterations,
loss_threshold,
num_guidance_steps,
seed,
boxes,
):
num_subjects = 0
subject_sub_prompts = convert_sub_prompts(subject_sub_prompts)
subject_token_indices = convert_token_indices(subject_token_indices, nested=True)
if subject_sub_prompts is not None:
num_subjects = len(subject_sub_prompts)
if subject_token_indices is not None:
num_subjects = len(subject_token_indices)
if len(boxes) != num_subjects:
raise gr.Error("""
The number of boxes should be equal to the number of subjects.
Number of boxes drawn: {}, number of subjects: {}.
""".format(len(boxes), num_subjects))
filter_token_indices = convert_token_indices(filter_token_indices) if len(filter_token_indices.strip()) > 0 else None
num_tokens = int(num_tokens) if len(num_tokens.strip()) > 0 else None
prompts = [prompt.strip(".").strip(",").strip()] * batch_size
images = inference(
boxes, prompts, subject_sub_prompts, subject_token_indices, filter_token_indices, num_tokens, init_step_size,
final_step_size, first_refinement_step, num_clusters_per_subject, cross_loss_scale, self_loss_scale,
classifier_free_guidance_scale, num_iterations, loss_threshold, num_guidance_steps, seed)
return images
def convert_sub_prompts(sub_prompts):
sub_prompts = sub_prompts.strip()
if len(sub_prompts) == 0:
return None
return [sub_prompt.strip() for sub_prompt in sub_prompts.split(";")]
def convert_token_indices(token_indices, nested=False):
token_indices = token_indices.strip()
if len(token_indices) == 0:
return None
if nested:
return [convert_token_indices(indices, nested=False) for indices in token_indices.split(";")]
return [int(index.strip()) for index in token_indices.split(",") if len(index.strip()) > 0]
def draw(sketchpad):
boxes = []
for i, layer in enumerate(sketchpad["layers"]):
non_zeros = layer.nonzero()
x1 = x2 = y1 = y2 = 0
if len(non_zeros[0]) > 0:
x1x2 = non_zeros[1] / layer.shape[1]
y1y2 = non_zeros[0] / layer.shape[0]
x1 = x1x2.min()
x2 = x1x2.max()
y1 = y1y2.min()
y2 = y1y2.max()
if (x2 - x1 < MIN_SIZE) or (y2 - y1 < MIN_SIZE):
raise gr.Error(f"Box in layer {i} is too small")
boxes.append((x1, y1, x2, y2))
print(f"Drawn boxes: {boxes}")
layout_image = draw_boxes(boxes)
return [boxes, layout_image]
def draw_boxes(boxes, is_sketch=False):
if len(boxes) == 0:
return None
boxes = np.array(boxes) * RESOLUTION
image = Image.new("RGB", (RESOLUTION, RESOLUTION), (WHITE, WHITE, WHITE))
drawing = ImageDraw.Draw(image)
for i, box in enumerate(boxes.astype(int).tolist()):
color = "black" if is_sketch else COLORS[i % len(COLORS)]
drawing.rectangle(box, outline=color, width=4)
return image
def clear(batch_size):
return [[], None, None, None]
def build_example_layout(prompt, *args):
boxes = EXAMPLE_BOXES[prompt]
print(f"Loaded boxes: {boxes}")
composite = draw_boxes(boxes, is_sketch=True)
sketchpad = {"background": None, "layers": [], "composite": composite}
layout_image = draw_boxes(boxes)
return boxes, sketchpad, layout_image
def main():
nltk.download("averaged_perceptron_tagger")
model = StableDiffusionXLPipeline.from_pretrained(REMOTE_MODEL_PATH)
model.save_pretrained(LOCAL_MODEL_PATH)
del model
with gr.Blocks(
css=CSS,
title="Bounded Attention demo",
) as demo:
gr.HTML(DESCRIPTION)
gr.HTML(COPY_LINK)
with gr.Column():
gr.HTML("Scroll down to see examples of the required input format.")
prompt = gr.Textbox(
label="Text prompt",
placeholder=PROMPT1,
)
subject_sub_prompts = gr.Textbox(
label="Sub-prompts for each subject (separate with semicolons)",
placeholder=SUBJECT_SUB_PROMPTS1,
)
with gr.Accordion("Precise inputs", open=False):
subject_token_indices = gr.Textbox(
label="Optional: The token indices of each subject (separate indices for the same subject with commas, and for different subjects with semicolons)",
placeholder=SUBJECT_TOKEN_INDICES1,
)
filter_token_indices = gr.Textbox(
label="Optional: The token indices to filter, i.e. conjunctions, numbers, postional relations, etc. (if left empty, this will be automatically inferred)",
placeholder=FILTER_TOKEN_INDICES1,
)
num_tokens = gr.Textbox(
label="Optional: The number of tokens in the prompt (We use this to verify your input, as sometimes rare words are split into more than one token)",
placeholder=NUM_TOKENS1,
)
with gr.Row():
sketchpad = gr.Sketchpad(label="Sketch Pad (draw each bounding box in a different layer)")
layout_image = gr.Image(type="pil", label="Bounding Boxes", interactive=False)
with gr.Row():
generate_layout_button = gr.Button(value="Generate layout")
generate_image_button = gr.Button(value="Generate image")
clear_button = gr.Button(value="Clear")
with gr.Row():
out_images = gr.Gallery(type="pil", label="Generated Images", interactive=False)
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
gr.HTML(ADVANCED_OPTION_DESCRIPTION)
batch_size = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Number of samples (limited to one sample on current space)")
num_guidance_steps = gr.Slider(minimum=5, maximum=20, step=1, value=8, label="Number of timesteps to perform guidance")
init_step_size = gr.Slider(minimum=0, maximum=50, step=0.5, value=30, label="Initial step size")
final_step_size = gr.Slider(minimum=0, maximum=20, step=0.5, value=15, label="Final step size")
first_refinement_step = gr.Slider(minimum=0, maximum=50, step=1, value=15, label="The timestep from which to start refining the subject masks")
num_clusters_per_subject = gr.Slider(minimum=0, maximum=5, step=0.5, value=3, label="Number of clusters per subject")
cross_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Cross-attention loss scale factor")
self_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Self-attention loss scale factor")
num_iterations = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Number of Gradient Descent iterations")
loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss threshold")
classifier_free_guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Classifier-free guidance Scale")
seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed")
boxes = gr.State([])
clear_button.click(
clear,
inputs=[batch_size],
outputs=[boxes, sketchpad, layout_image, out_images],
queue=False,
)
generate_layout_button.click(
draw,
inputs=[sketchpad],
outputs=[boxes, layout_image],
queue=False,
)
generate_image_button.click(
fn=generate,
inputs=[
prompt, subject_sub_prompts, subject_token_indices, filter_token_indices, num_tokens,
init_step_size, final_step_size, first_refinement_step, num_clusters_per_subject, cross_loss_scale, self_loss_scale,
classifier_free_guidance_scale, batch_size, num_iterations, loss_threshold, num_guidance_steps,
seed,
boxes,
],
outputs=[out_images],
queue=True,
)
with gr.Column():
gr.Examples(
examples=[
[
PROMPT1, SUBJECT_SUB_PROMPTS1, SUBJECT_TOKEN_INDICES1, FILTER_TOKEN_INDICES1, NUM_TOKENS1,
15, 10, 15, 3, 1, 1,
7.5, 1, 5, 0.2, 8,
12,
],
[
PROMPT2, "cute unicorn;pink hedgehog;nerdy owl", "7,8,17;11,12,17;15,16,17", "5,6,9,10,13,14,18,19", "21",
25, 18, 15, 3, 1, 1,
7.5, 1, 5, 0.2, 8,
286,
],
[
PROMPT3, "astronaut;robot;green alien;spaceship", "7;10;13,14;17", "5,6,8,9,11,12,15,16", "17",
18, 12, 15, 3, 1, 1,
7.5, 1, 5, 0.2, 8,
216,
],
[
PROMPT4, "semi trailer;concrete mixer;helicopter", "9,10;13,14;17", "1,4,5,7,8,11,12,15,16", "17",
25, 18, 15, 3, 1, 1,
7.5, 1, 5, 0.2, 8,
82,
],
[
PROMPT5, "golden retriever;german shepherd;boston terrier;english bulldog;border collie", "2,3;6,7;10,11;14,15;18,19", "1,4,5,8,9,12,13,16,17,20,21", "22",
18, 12, 15, 3, 1, 1,
7.5, 1, 5, 0.2, 8,
152,
],
],
fn=build_example_layout,
inputs=[
prompt, subject_sub_prompts, subject_token_indices, filter_token_indices, num_tokens,
init_step_size, final_step_size, first_refinement_step, num_clusters_per_subject, cross_loss_scale, self_loss_scale,
classifier_free_guidance_scale, batch_size, num_iterations, loss_threshold, num_guidance_steps,
seed,
],
outputs=[boxes, sketchpad, layout_image],
run_on_click=True,
)
gr.HTML(FOOTNOTE)
demo.launch(show_api=False, show_error=True)
if __name__ == "__main__":
main()