|
from collections import namedtuple |
|
import torch |
|
import torch.nn.functional as F |
|
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module |
|
|
|
""" |
|
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch) |
|
""" |
|
|
|
|
|
class Flatten(Module): |
|
def forward(self, input): |
|
return input.view(input.size(0), -1) |
|
|
|
|
|
def l2_norm(input, axis=1): |
|
norm = torch.norm(input, 2, axis, True) |
|
output = torch.div(input, norm) |
|
return output |
|
|
|
|
|
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])): |
|
""" A named tuple describing a ResNet block. """ |
|
|
|
|
|
def get_block(in_channel, depth, num_units, stride=2): |
|
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)] |
|
|
|
|
|
def get_blocks(num_layers): |
|
if num_layers == 50: |
|
blocks = [ |
|
get_block(in_channel=64, depth=64, num_units=3), |
|
get_block(in_channel=64, depth=128, num_units=4), |
|
get_block(in_channel=128, depth=256, num_units=14), |
|
get_block(in_channel=256, depth=512, num_units=3) |
|
] |
|
elif num_layers == 100: |
|
blocks = [ |
|
get_block(in_channel=64, depth=64, num_units=3), |
|
get_block(in_channel=64, depth=128, num_units=13), |
|
get_block(in_channel=128, depth=256, num_units=30), |
|
get_block(in_channel=256, depth=512, num_units=3) |
|
] |
|
elif num_layers == 152: |
|
blocks = [ |
|
get_block(in_channel=64, depth=64, num_units=3), |
|
get_block(in_channel=64, depth=128, num_units=8), |
|
get_block(in_channel=128, depth=256, num_units=36), |
|
get_block(in_channel=256, depth=512, num_units=3) |
|
] |
|
else: |
|
raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers)) |
|
return blocks |
|
|
|
|
|
class SEModule(Module): |
|
def __init__(self, channels, reduction): |
|
super(SEModule, self).__init__() |
|
self.avg_pool = AdaptiveAvgPool2d(1) |
|
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False) |
|
self.relu = ReLU(inplace=True) |
|
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False) |
|
self.sigmoid = Sigmoid() |
|
|
|
def forward(self, x): |
|
module_input = x |
|
x = self.avg_pool(x) |
|
x = self.fc1(x) |
|
x = self.relu(x) |
|
x = self.fc2(x) |
|
x = self.sigmoid(x) |
|
return module_input * x |
|
|
|
|
|
class bottleneck_IR(Module): |
|
def __init__(self, in_channel, depth, stride): |
|
super(bottleneck_IR, self).__init__() |
|
if in_channel == depth: |
|
self.shortcut_layer = MaxPool2d(1, stride) |
|
else: |
|
self.shortcut_layer = Sequential( |
|
Conv2d(in_channel, depth, (1, 1), stride, bias=False), |
|
BatchNorm2d(depth) |
|
) |
|
self.res_layer = Sequential( |
|
BatchNorm2d(in_channel), |
|
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth), |
|
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth) |
|
) |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut_layer(x) |
|
res = self.res_layer(x) |
|
return res + shortcut |
|
|
|
|
|
class bottleneck_IR_SE(Module): |
|
def __init__(self, in_channel, depth, stride): |
|
super(bottleneck_IR_SE, self).__init__() |
|
if in_channel == depth: |
|
self.shortcut_layer = MaxPool2d(1, stride) |
|
else: |
|
self.shortcut_layer = Sequential( |
|
Conv2d(in_channel, depth, (1, 1), stride, bias=False), |
|
BatchNorm2d(depth) |
|
) |
|
self.res_layer = Sequential( |
|
BatchNorm2d(in_channel), |
|
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), |
|
PReLU(depth), |
|
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), |
|
BatchNorm2d(depth), |
|
SEModule(depth, 16) |
|
) |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut_layer(x) |
|
res = self.res_layer(x) |
|
return res + shortcut |
|
|
|
|
|
def _upsample_add(x, y): |
|
"""Upsample and add two feature maps. |
|
Args: |
|
x: (Variable) top feature map to be upsampled. |
|
y: (Variable) lateral feature map. |
|
Returns: |
|
(Variable) added feature map. |
|
Note in PyTorch, when input size is odd, the upsampled feature map |
|
with `F.upsample(..., scale_factor=2, mode='nearest')` |
|
maybe not equal to the lateral feature map size. |
|
e.g. |
|
original input size: [N,_,15,15] -> |
|
conv2d feature map size: [N,_,8,8] -> |
|
upsampled feature map size: [N,_,16,16] |
|
So we choose bilinear upsample which supports arbitrary output sizes. |
|
""" |
|
_, _, H, W = y.size() |
|
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y |
|
|