|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Generator architecture from the paper |
|
"Alias-Free Generative Adversarial Networks".""" |
|
|
|
import numpy as np |
|
import scipy.signal |
|
import scipy.optimize |
|
import torch |
|
import torch.nn.functional as F |
|
from torch_utils import misc |
|
from torch_utils import persistence |
|
from torch_utils.ops import conv2d_gradfix |
|
from torch_utils.ops import filtered_lrelu |
|
from torch_utils.ops import bias_act |
|
|
|
|
|
|
|
@misc.profiled_function |
|
def modulated_conv2d( |
|
x, |
|
w, |
|
s, |
|
demodulate = True, |
|
padding = 0, |
|
input_gain = None, |
|
): |
|
with misc.suppress_tracer_warnings(): |
|
batch_size = int(x.shape[0]) |
|
out_channels, in_channels, kh, kw = w.shape |
|
misc.assert_shape(w, [out_channels, in_channels, kh, kw]) |
|
misc.assert_shape(x, [batch_size, in_channels, None, None]) |
|
misc.assert_shape(s, [batch_size, in_channels]) |
|
|
|
|
|
if demodulate: |
|
w = w * w.square().mean([1,2,3], keepdim=True).rsqrt() |
|
s = s * s.square().mean().rsqrt() |
|
|
|
|
|
w = w.unsqueeze(0) |
|
w = w * s.unsqueeze(1).unsqueeze(3).unsqueeze(4) |
|
|
|
|
|
if demodulate: |
|
dcoefs = (w.square().sum(dim=[2,3,4]) + 1e-8).rsqrt() |
|
w = w * dcoefs.unsqueeze(2).unsqueeze(3).unsqueeze(4) |
|
|
|
|
|
if input_gain is not None: |
|
input_gain = input_gain.expand(batch_size, in_channels) |
|
w = w * input_gain.unsqueeze(1).unsqueeze(3).unsqueeze(4) |
|
|
|
|
|
x = x.reshape(1, -1, *x.shape[2:]) |
|
w = w.reshape(-1, in_channels, kh, kw) |
|
x = conv2d_gradfix.conv2d(input=x, weight=w.to(x.dtype), padding=padding, groups=batch_size) |
|
x = x.reshape(batch_size, -1, *x.shape[2:]) |
|
return x |
|
|
|
|
|
|
|
@persistence.persistent_class |
|
class FullyConnectedLayer(torch.nn.Module): |
|
def __init__(self, |
|
in_features, |
|
out_features, |
|
activation = 'linear', |
|
bias = True, |
|
lr_multiplier = 1, |
|
weight_init = 1, |
|
bias_init = 0, |
|
): |
|
super().__init__() |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
self.activation = activation |
|
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) * (weight_init / lr_multiplier)) |
|
bias_init = np.broadcast_to(np.asarray(bias_init, dtype=np.float32), [out_features]) |
|
self.bias = torch.nn.Parameter(torch.from_numpy(bias_init / lr_multiplier)) if bias else None |
|
self.weight_gain = lr_multiplier / np.sqrt(in_features) |
|
self.bias_gain = lr_multiplier |
|
|
|
def forward(self, x): |
|
w = self.weight.to(x.dtype) * self.weight_gain |
|
b = self.bias |
|
if b is not None: |
|
b = b.to(x.dtype) |
|
if self.bias_gain != 1: |
|
b = b * self.bias_gain |
|
if self.activation == 'linear' and b is not None: |
|
x = torch.addmm(b.unsqueeze(0), x, w.t()) |
|
else: |
|
x = x.matmul(w.t()) |
|
x = bias_act.bias_act(x, b, act=self.activation) |
|
return x |
|
|
|
def extra_repr(self): |
|
return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}' |
|
|
|
|
|
|
|
@persistence.persistent_class |
|
class MappingNetwork(torch.nn.Module): |
|
def __init__(self, |
|
z_dim, |
|
c_dim, |
|
w_dim, |
|
num_ws, |
|
num_layers = 2, |
|
lr_multiplier = 0.01, |
|
w_avg_beta = 0.998, |
|
): |
|
super().__init__() |
|
self.z_dim = z_dim |
|
self.c_dim = c_dim |
|
self.w_dim = w_dim |
|
self.num_ws = num_ws |
|
self.num_layers = num_layers |
|
self.w_avg_beta = w_avg_beta |
|
|
|
|
|
self.embed = FullyConnectedLayer(self.c_dim, self.w_dim) if self.c_dim > 0 else None |
|
features = [self.z_dim + (self.w_dim if self.c_dim > 0 else 0)] + [self.w_dim] * self.num_layers |
|
for idx, in_features, out_features in zip(range(num_layers), features[:-1], features[1:]): |
|
layer = FullyConnectedLayer(in_features, out_features, activation='lrelu', lr_multiplier=lr_multiplier) |
|
setattr(self, f'fc{idx}', layer) |
|
self.register_buffer('w_avg', torch.zeros([w_dim])) |
|
|
|
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False): |
|
misc.assert_shape(z, [None, self.z_dim]) |
|
if truncation_cutoff is None: |
|
truncation_cutoff = self.num_ws |
|
|
|
|
|
x = z.to(torch.float32) |
|
x = x * (x.square().mean(1, keepdim=True) + 1e-8).rsqrt() |
|
if self.c_dim > 0: |
|
misc.assert_shape(c, [None, self.c_dim]) |
|
y = self.embed(c.to(torch.float32)) |
|
y = y * (y.square().mean(1, keepdim=True) + 1e-8).rsqrt() |
|
x = torch.cat([x, y], dim=1) if x is not None else y |
|
|
|
|
|
for idx in range(self.num_layers): |
|
x = getattr(self, f'fc{idx}')(x) |
|
|
|
|
|
if update_emas: |
|
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta)) |
|
|
|
|
|
x = x.unsqueeze(1).repeat([1, self.num_ws, 1]) |
|
if truncation_psi != 1: |
|
x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi) |
|
return x |
|
|
|
def extra_repr(self): |
|
return f'z_dim={self.z_dim:d}, c_dim={self.c_dim:d}, w_dim={self.w_dim:d}, num_ws={self.num_ws:d}' |
|
|
|
|
|
|
|
@persistence.persistent_class |
|
class SynthesisInput(torch.nn.Module): |
|
def __init__(self, |
|
w_dim, |
|
channels, |
|
size, |
|
sampling_rate, |
|
bandwidth, |
|
): |
|
super().__init__() |
|
self.w_dim = w_dim |
|
self.channels = channels |
|
self.size = np.broadcast_to(np.asarray(size), [2]) |
|
self.sampling_rate = sampling_rate |
|
self.bandwidth = bandwidth |
|
|
|
|
|
freqs = torch.randn([self.channels, 2]) |
|
radii = freqs.square().sum(dim=1, keepdim=True).sqrt() |
|
freqs /= radii * radii.square().exp().pow(0.25) |
|
freqs *= bandwidth |
|
phases = torch.rand([self.channels]) - 0.5 |
|
|
|
|
|
self.weight = torch.nn.Parameter(torch.randn([self.channels, self.channels])) |
|
self.affine = FullyConnectedLayer(w_dim, 4, weight_init=0, bias_init=[1,0,0,0]) |
|
self.register_buffer('transform', torch.eye(3, 3)) |
|
self.register_buffer('freqs', freqs) |
|
self.register_buffer('phases', phases) |
|
|
|
def forward(self, w): |
|
|
|
transforms = self.transform.unsqueeze(0) |
|
freqs = self.freqs.unsqueeze(0) |
|
phases = self.phases.unsqueeze(0) |
|
|
|
|
|
t = self.affine(w) |
|
t = t / t[:, :2].norm(dim=1, keepdim=True) |
|
m_r = torch.eye(3, device=w.device).unsqueeze(0).repeat([w.shape[0], 1, 1]) |
|
m_r[:, 0, 0] = t[:, 0] |
|
m_r[:, 0, 1] = -t[:, 1] |
|
m_r[:, 1, 0] = t[:, 1] |
|
m_r[:, 1, 1] = t[:, 0] |
|
m_t = torch.eye(3, device=w.device).unsqueeze(0).repeat([w.shape[0], 1, 1]) |
|
m_t[:, 0, 2] = -t[:, 2] |
|
m_t[:, 1, 2] = -t[:, 3] |
|
transforms = m_r @ m_t @ transforms |
|
|
|
|
|
phases = phases + (freqs @ transforms[:, :2, 2:]).squeeze(2) |
|
freqs = freqs @ transforms[:, :2, :2] |
|
|
|
|
|
amplitudes = (1 - (freqs.norm(dim=2) - self.bandwidth) / (self.sampling_rate / 2 - self.bandwidth)).clamp(0, 1) |
|
|
|
|
|
theta = torch.eye(2, 3, device=w.device) |
|
theta[0, 0] = 0.5 * self.size[0] / self.sampling_rate |
|
theta[1, 1] = 0.5 * self.size[1] / self.sampling_rate |
|
grids = torch.nn.functional.affine_grid(theta.unsqueeze(0), [1, 1, self.size[1], self.size[0]], align_corners=False) |
|
|
|
|
|
x = (grids.unsqueeze(3) @ freqs.permute(0, 2, 1).unsqueeze(1).unsqueeze(2)).squeeze(3) |
|
x = x + phases.unsqueeze(1).unsqueeze(2) |
|
x = torch.sin(x * (np.pi * 2)) |
|
x = x * amplitudes.unsqueeze(1).unsqueeze(2) |
|
|
|
|
|
weight = self.weight / np.sqrt(self.channels) |
|
x = x @ weight.t() |
|
|
|
|
|
x = x.permute(0, 3, 1, 2) |
|
misc.assert_shape(x, [w.shape[0], self.channels, int(self.size[1]), int(self.size[0])]) |
|
return x |
|
|
|
def extra_repr(self): |
|
return '\n'.join([ |
|
f'w_dim={self.w_dim:d}, channels={self.channels:d}, size={list(self.size)},', |
|
f'sampling_rate={self.sampling_rate:g}, bandwidth={self.bandwidth:g}']) |
|
|
|
|
|
|
|
@persistence.persistent_class |
|
class SynthesisLayer(torch.nn.Module): |
|
def __init__(self, |
|
w_dim, |
|
is_torgb, |
|
is_critically_sampled, |
|
use_fp16, |
|
|
|
|
|
in_channels, |
|
out_channels, |
|
in_size, |
|
out_size, |
|
in_sampling_rate, |
|
out_sampling_rate, |
|
in_cutoff, |
|
out_cutoff, |
|
in_half_width, |
|
out_half_width, |
|
|
|
|
|
conv_kernel = 3, |
|
filter_size = 6, |
|
lrelu_upsampling = 2, |
|
use_radial_filters = False, |
|
conv_clamp = 256, |
|
magnitude_ema_beta = 0.999, |
|
): |
|
super().__init__() |
|
self.w_dim = w_dim |
|
self.is_torgb = is_torgb |
|
self.is_critically_sampled = is_critically_sampled |
|
self.use_fp16 = use_fp16 |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.in_size = np.broadcast_to(np.asarray(in_size), [2]) |
|
self.out_size = np.broadcast_to(np.asarray(out_size), [2]) |
|
self.in_sampling_rate = in_sampling_rate |
|
self.out_sampling_rate = out_sampling_rate |
|
self.tmp_sampling_rate = max(in_sampling_rate, out_sampling_rate) * (1 if is_torgb else lrelu_upsampling) |
|
self.in_cutoff = in_cutoff |
|
self.out_cutoff = out_cutoff |
|
self.in_half_width = in_half_width |
|
self.out_half_width = out_half_width |
|
self.conv_kernel = 1 if is_torgb else conv_kernel |
|
self.conv_clamp = conv_clamp |
|
self.magnitude_ema_beta = magnitude_ema_beta |
|
|
|
|
|
self.affine = FullyConnectedLayer(self.w_dim, self.in_channels, bias_init=1) |
|
self.weight = torch.nn.Parameter(torch.randn([self.out_channels, self.in_channels, self.conv_kernel, self.conv_kernel])) |
|
self.bias = torch.nn.Parameter(torch.zeros([self.out_channels])) |
|
self.register_buffer('magnitude_ema', torch.ones([])) |
|
|
|
|
|
self.up_factor = int(np.rint(self.tmp_sampling_rate / self.in_sampling_rate)) |
|
assert self.in_sampling_rate * self.up_factor == self.tmp_sampling_rate |
|
self.up_taps = filter_size * self.up_factor if self.up_factor > 1 and not self.is_torgb else 1 |
|
self.register_buffer('up_filter', self.design_lowpass_filter( |
|
numtaps=self.up_taps, cutoff=self.in_cutoff, width=self.in_half_width*2, fs=self.tmp_sampling_rate)) |
|
|
|
|
|
self.down_factor = int(np.rint(self.tmp_sampling_rate / self.out_sampling_rate)) |
|
assert self.out_sampling_rate * self.down_factor == self.tmp_sampling_rate |
|
self.down_taps = filter_size * self.down_factor if self.down_factor > 1 and not self.is_torgb else 1 |
|
self.down_radial = use_radial_filters and not self.is_critically_sampled |
|
self.register_buffer('down_filter', self.design_lowpass_filter( |
|
numtaps=self.down_taps, cutoff=self.out_cutoff, width=self.out_half_width*2, fs=self.tmp_sampling_rate, radial=self.down_radial)) |
|
|
|
|
|
pad_total = (self.out_size - 1) * self.down_factor + 1 |
|
pad_total -= (self.in_size + self.conv_kernel - 1) * self.up_factor |
|
pad_total += self.up_taps + self.down_taps - 2 |
|
pad_lo = (pad_total + self.up_factor) // 2 |
|
pad_hi = pad_total - pad_lo |
|
self.padding = [int(pad_lo[0]), int(pad_hi[0]), int(pad_lo[1]), int(pad_hi[1])] |
|
|
|
def forward(self, x, w, noise_mode='random', force_fp32=False, update_emas=False): |
|
assert noise_mode in ['random', 'const', 'none'] |
|
misc.assert_shape(x, [None, self.in_channels, int(self.in_size[1]), int(self.in_size[0])]) |
|
misc.assert_shape(w, [x.shape[0], self.w_dim]) |
|
|
|
|
|
if update_emas: |
|
with torch.autograd.profiler.record_function('update_magnitude_ema'): |
|
magnitude_cur = x.detach().to(torch.float32).square().mean() |
|
self.magnitude_ema.copy_(magnitude_cur.lerp(self.magnitude_ema, self.magnitude_ema_beta)) |
|
input_gain = self.magnitude_ema.rsqrt() |
|
|
|
|
|
styles = self.affine(w) |
|
if self.is_torgb: |
|
weight_gain = 1 / np.sqrt(self.in_channels * (self.conv_kernel ** 2)) |
|
styles = styles * weight_gain |
|
|
|
|
|
dtype = torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == 'cuda') else torch.float32 |
|
x = modulated_conv2d(x=x.to(dtype), w=self.weight, s=styles, |
|
padding=self.conv_kernel-1, demodulate=(not self.is_torgb), input_gain=input_gain) |
|
|
|
|
|
gain = 1 if self.is_torgb else np.sqrt(2) |
|
slope = 1 if self.is_torgb else 0.2 |
|
x = filtered_lrelu.filtered_lrelu(x=x, fu=self.up_filter, fd=self.down_filter, b=self.bias.to(x.dtype), |
|
up=self.up_factor, down=self.down_factor, padding=self.padding, gain=gain, slope=slope, clamp=self.conv_clamp) |
|
|
|
|
|
misc.assert_shape(x, [None, self.out_channels, int(self.out_size[1]), int(self.out_size[0])]) |
|
assert x.dtype == dtype |
|
return x |
|
|
|
@staticmethod |
|
def design_lowpass_filter(numtaps, cutoff, width, fs, radial=False): |
|
assert numtaps >= 1 |
|
|
|
|
|
if numtaps == 1: |
|
return None |
|
|
|
|
|
if not radial: |
|
f = scipy.signal.firwin(numtaps=numtaps, cutoff=cutoff, width=width, fs=fs) |
|
return torch.as_tensor(f, dtype=torch.float32) |
|
|
|
|
|
x = (np.arange(numtaps) - (numtaps - 1) / 2) / fs |
|
r = np.hypot(*np.meshgrid(x, x)) |
|
f = scipy.special.j1(2 * cutoff * (np.pi * r)) / (np.pi * r) |
|
beta = scipy.signal.kaiser_beta(scipy.signal.kaiser_atten(numtaps, width / (fs / 2))) |
|
w = np.kaiser(numtaps, beta) |
|
f *= np.outer(w, w) |
|
f /= np.sum(f) |
|
return torch.as_tensor(f, dtype=torch.float32) |
|
|
|
def extra_repr(self): |
|
return '\n'.join([ |
|
f'w_dim={self.w_dim:d}, is_torgb={self.is_torgb},', |
|
f'is_critically_sampled={self.is_critically_sampled}, use_fp16={self.use_fp16},', |
|
f'in_sampling_rate={self.in_sampling_rate:g}, out_sampling_rate={self.out_sampling_rate:g},', |
|
f'in_cutoff={self.in_cutoff:g}, out_cutoff={self.out_cutoff:g},', |
|
f'in_half_width={self.in_half_width:g}, out_half_width={self.out_half_width:g},', |
|
f'in_size={list(self.in_size)}, out_size={list(self.out_size)},', |
|
f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}']) |
|
|
|
|
|
|
|
@persistence.persistent_class |
|
class SynthesisNetwork(torch.nn.Module): |
|
def __init__(self, |
|
w_dim, |
|
img_resolution, |
|
img_channels, |
|
channel_base = 32768, |
|
channel_max = 512, |
|
num_layers = 14, |
|
num_critical = 2, |
|
first_cutoff = 2, |
|
first_stopband = 2**2.1, |
|
last_stopband_rel = 2**0.3, |
|
margin_size = 10, |
|
output_scale = 0.25, |
|
num_fp16_res = 4, |
|
**layer_kwargs, |
|
): |
|
super().__init__() |
|
self.w_dim = w_dim |
|
self.num_ws = num_layers + 2 |
|
self.img_resolution = img_resolution |
|
self.img_channels = img_channels |
|
self.num_layers = num_layers |
|
self.num_critical = num_critical |
|
self.margin_size = margin_size |
|
self.output_scale = output_scale |
|
self.num_fp16_res = num_fp16_res |
|
|
|
|
|
last_cutoff = self.img_resolution / 2 |
|
last_stopband = last_cutoff * last_stopband_rel |
|
exponents = np.minimum(np.arange(self.num_layers + 1) / (self.num_layers - self.num_critical), 1) |
|
cutoffs = first_cutoff * (last_cutoff / first_cutoff) ** exponents |
|
stopbands = first_stopband * (last_stopband / first_stopband) ** exponents |
|
|
|
|
|
sampling_rates = np.exp2(np.ceil(np.log2(np.minimum(stopbands * 2, self.img_resolution)))) |
|
half_widths = np.maximum(stopbands, sampling_rates / 2) - cutoffs |
|
sizes = sampling_rates + self.margin_size * 2 |
|
sizes[-2:] = self.img_resolution |
|
channels = np.rint(np.minimum((channel_base / 2) / cutoffs, channel_max)) |
|
channels[-1] = self.img_channels |
|
|
|
|
|
self.input = SynthesisInput( |
|
w_dim=self.w_dim, channels=int(channels[0]), size=int(sizes[0]), |
|
sampling_rate=sampling_rates[0], bandwidth=cutoffs[0]) |
|
self.layer_names = [] |
|
for idx in range(self.num_layers + 1): |
|
prev = max(idx - 1, 0) |
|
is_torgb = (idx == self.num_layers) |
|
is_critically_sampled = (idx >= self.num_layers - self.num_critical) |
|
use_fp16 = (sampling_rates[idx] * (2 ** self.num_fp16_res) > self.img_resolution) |
|
layer = SynthesisLayer( |
|
w_dim=self.w_dim, is_torgb=is_torgb, is_critically_sampled=is_critically_sampled, use_fp16=use_fp16, |
|
in_channels=int(channels[prev]), out_channels= int(channels[idx]), |
|
in_size=int(sizes[prev]), out_size=int(sizes[idx]), |
|
in_sampling_rate=int(sampling_rates[prev]), out_sampling_rate=int(sampling_rates[idx]), |
|
in_cutoff=cutoffs[prev], out_cutoff=cutoffs[idx], |
|
in_half_width=half_widths[prev], out_half_width=half_widths[idx], |
|
**layer_kwargs) |
|
name = f'L{idx}_{layer.out_size[0]}_{layer.out_channels}' |
|
setattr(self, name, layer) |
|
self.layer_names.append(name) |
|
|
|
def forward(self, ws, return_feature=False, **layer_kwargs): |
|
features = [] |
|
misc.assert_shape(ws, [None, self.num_ws, self.w_dim]) |
|
ws = ws.to(torch.float32).unbind(dim=1) |
|
|
|
|
|
x = self.input(ws[0]) |
|
for name, w in zip(self.layer_names, ws[1:]): |
|
x = getattr(self, name)(x, w, **layer_kwargs) |
|
features.append(x) |
|
if self.output_scale != 1: |
|
x = x * self.output_scale |
|
|
|
|
|
misc.assert_shape(x, [None, self.img_channels, self.img_resolution, self.img_resolution]) |
|
x = x.to(torch.float32) |
|
if return_feature: |
|
return x, features |
|
else: |
|
return x |
|
|
|
def extra_repr(self): |
|
return '\n'.join([ |
|
f'w_dim={self.w_dim:d}, num_ws={self.num_ws:d},', |
|
f'img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d},', |
|
f'num_layers={self.num_layers:d}, num_critical={self.num_critical:d},', |
|
f'margin_size={self.margin_size:d}, num_fp16_res={self.num_fp16_res:d}']) |
|
|
|
|
|
|
|
@persistence.persistent_class |
|
class Generator(torch.nn.Module): |
|
def __init__(self, |
|
z_dim, |
|
c_dim, |
|
w_dim, |
|
img_resolution, |
|
img_channels, |
|
mapping_kwargs = {}, |
|
resize=None, |
|
**synthesis_kwargs, |
|
): |
|
super().__init__() |
|
self.z_dim = z_dim |
|
self.c_dim = c_dim |
|
self.w_dim = w_dim |
|
self.img_resolution = img_resolution |
|
self.img_channels = img_channels |
|
self.synthesis = SynthesisNetwork(w_dim=w_dim, img_resolution=img_resolution, img_channels=img_channels, **synthesis_kwargs) |
|
self.num_ws = self.synthesis.num_ws |
|
self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs) |
|
self.resize = resize |
|
|
|
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False, input_is_w=False, return_feature=False, **synthesis_kwargs): |
|
if input_is_w: |
|
ws = z |
|
if ws.dim() == 2: |
|
ws = ws.unsqueeze(1).repeat([1, self.mapping.num_ws, 1]) |
|
else: |
|
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas) |
|
img = self.synthesis(ws, update_emas=update_emas, return_feature=return_feature, **synthesis_kwargs) |
|
if return_feature: |
|
img, feature = img |
|
if self.resize is not None: |
|
img = imresize(img, [self.resize, self.resize]) |
|
if return_feature: |
|
return img, feature |
|
else: |
|
return img |
|
|
|
|
|
|
|
def imresize(image, size): |
|
dim = image.dim() |
|
if dim == 3: |
|
image = image.unsqueeze(1) |
|
b, _, h, w = image.shape |
|
if size[0] > h: |
|
image = F.interpolate(image, size, mode='bilinear') |
|
elif size[0] < h: |
|
image = F.interpolate(image, size, mode='area') |
|
if dim == 3: |
|
image = image.squeeze(1) |
|
return image |
|
|