Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import cv2 | |
| import os | |
| import json | |
| from tqdm import tqdm | |
| from glob import glob | |
| import matplotlib.pyplot as plt | |
| import tensorflow as tf | |
| from tensorflow.keras import layers, models, optimizers | |
| from custom_layers import yolov4_neck, yolov4_head, nms | |
| from utils import load_weights, get_detection_data, draw_bbox, voc_ap, draw_plot_func, read_txt_to_list | |
| from config import yolo_config | |
| from loss import yolo_loss | |
| class Yolov4(object): | |
| def __init__(self, | |
| weight_path=None, | |
| class_name_path='coco_classes.txt', | |
| config=yolo_config, | |
| ): | |
| assert config['img_size'][0] == config['img_size'][1], 'not support yet' | |
| assert config['img_size'][0] % config['strides'][-1] == 0, 'must be a multiple of last stride' | |
| self.class_names = [line.strip() for line in open(class_name_path).readlines()] | |
| self.img_size = yolo_config['img_size'] | |
| self.num_classes = len(self.class_names) | |
| self.weight_path = weight_path | |
| self.anchors = np.array(yolo_config['anchors']).reshape((3, 3, 2)) | |
| self.xyscale = yolo_config['xyscale'] | |
| self.strides = yolo_config['strides'] | |
| self.output_sizes = [self.img_size[0] // s for s in self.strides] | |
| self.class_color = {name: list(np.random.random(size=3)*255) for name in self.class_names} | |
| # Training | |
| self.max_boxes = yolo_config['max_boxes'] | |
| self.iou_loss_thresh = yolo_config['iou_loss_thresh'] | |
| self.config = yolo_config | |
| assert self.num_classes > 0, 'no classes detected!' | |
| tf.keras.backend.clear_session() | |
| if yolo_config['num_gpu'] > 1: | |
| mirrored_strategy = tf.distribute.MirroredStrategy() | |
| with mirrored_strategy.scope(): | |
| self.build_model(load_pretrained=True if self.weight_path else False) | |
| else: | |
| self.build_model(load_pretrained=True if self.weight_path else False) | |
| def build_model(self, load_pretrained=True): | |
| # core yolo model | |
| input_layer = layers.Input(self.img_size) | |
| yolov4_output = yolov4_neck(input_layer, self.num_classes) | |
| self.yolo_model = models.Model(input_layer, yolov4_output) | |
| # Build training model | |
| y_true = [ | |
| layers.Input(name='input_2', shape=(52, 52, 3, (self.num_classes + 5))), # label small boxes | |
| layers.Input(name='input_3', shape=(26, 26, 3, (self.num_classes + 5))), # label medium boxes | |
| layers.Input(name='input_4', shape=(13, 13, 3, (self.num_classes + 5))), # label large boxes | |
| layers.Input(name='input_5', shape=(self.max_boxes, 4)), # true bboxes | |
| ] | |
| loss_list = tf.keras.layers.Lambda(yolo_loss, name='yolo_loss', | |
| arguments={'num_classes': self.num_classes, | |
| 'iou_loss_thresh': self.iou_loss_thresh, | |
| 'anchors': self.anchors})([*self.yolo_model.output, *y_true]) | |
| self.training_model = models.Model([self.yolo_model.input, *y_true], loss_list) | |
| # Build inference model | |
| yolov4_output = yolov4_head(yolov4_output, self.num_classes, self.anchors, self.xyscale) | |
| # output: [boxes, scores, classes, valid_detections] | |
| self.inference_model = models.Model(input_layer, | |
| nms(yolov4_output, self.img_size, self.num_classes, | |
| iou_threshold=self.config['iou_threshold'], | |
| score_threshold=self.config['score_threshold'])) | |
| if load_pretrained and self.weight_path and self.weight_path.endswith('.weights'): | |
| if self.weight_path.endswith('.weights'): | |
| load_weights(self.yolo_model, self.weight_path) | |
| print(f'load from {self.weight_path}') | |
| elif self.weight_path.endswith('.h5'): | |
| self.training_model.load_weights(self.weight_path) | |
| print(f'load from {self.weight_path}') | |
| self.training_model.compile(optimizer=optimizers.Adam(lr=1e-3), | |
| loss={'yolo_loss': lambda y_true, y_pred: y_pred}) | |
| def load_model(self, path): | |
| self.yolo_model = models.load_model(path, compile=False) | |
| yolov4_output = yolov4_head(self.yolo_model.output, self.num_classes, self.anchors, self.xyscale) | |
| self.inference_model = models.Model(self.yolo_model.input, | |
| nms(yolov4_output, self.img_size, self.num_classes)) # [boxes, scores, classes, valid_detections] | |
| def save_model(self, path): | |
| self.yolo_model.save(path) | |
| def preprocess_img(self, img): | |
| img = cv2.resize(img, self.img_size[:2]) | |
| img = img / 255. | |
| return img | |
| def fit(self, train_data_gen, epochs, val_data_gen=None, initial_epoch=0, callbacks=None): | |
| self.training_model.fit(train_data_gen, | |
| steps_per_epoch=len(train_data_gen), | |
| validation_data=val_data_gen, | |
| validation_steps=len(val_data_gen), | |
| epochs=epochs, | |
| callbacks=callbacks, | |
| initial_epoch=initial_epoch) | |
| # raw_img: RGB | |
| def predict_img(self, raw_img, random_color=True, plot_img=True, figsize=(10, 10), show_text=True, return_output=True): | |
| print('img shape: ', raw_img.shape) | |
| img = self.preprocess_img(raw_img) | |
| imgs = np.expand_dims(img, axis=0) | |
| pred_output = self.inference_model.predict(imgs) | |
| detections = get_detection_data(img=raw_img, | |
| model_outputs=pred_output, | |
| class_names=self.class_names) | |
| output_img = draw_bbox(raw_img, detections, cmap=self.class_color, random_color=random_color, figsize=figsize, | |
| show_text=show_text, show_img=False) | |
| if return_output: | |
| return output_img, detections | |
| else: | |
| return detections | |
| def predict(self, img_path, random_color=True, plot_img=True, figsize=(10, 10), show_text=True): | |
| raw_img = img_path | |
| return self.predict_img(raw_img, random_color, plot_img, figsize, show_text) | |
| def export_gt(self, annotation_path, gt_folder_path): | |
| with open(annotation_path) as file: | |
| for line in file: | |
| line = line.split(' ') | |
| filename = line[0].split(os.sep)[-1].split('.')[0] | |
| objs = line[1:] | |
| # export txt file | |
| with open(os.path.join(gt_folder_path, filename + '.txt'), 'w') as output_file: | |
| for obj in objs: | |
| x_min, y_min, x_max, y_max, class_id = [float(o) for o in obj.strip().split(',')] | |
| output_file.write(f'{self.class_names[int(class_id)]} {x_min} {y_min} {x_max} {y_max}\n') | |
| def export_prediction(self, annotation_path, pred_folder_path, img_folder_path, bs=2): | |
| with open(annotation_path) as file: | |
| img_paths = [os.path.join(img_folder_path, line.split(' ')[0].split(os.sep)[-1]) for line in file] | |
| # print(img_paths[:20]) | |
| for batch_idx in tqdm(range(0, len(img_paths), bs)): | |
| # print(len(img_paths), batch_idx, batch_idx*bs, (batch_idx+1)*bs) | |
| paths = img_paths[batch_idx:batch_idx+bs] | |
| # print(paths) | |
| # read and process img | |
| imgs = np.zeros((len(paths), *self.img_size)) | |
| raw_img_shapes = [] | |
| for j, path in enumerate(paths): | |
| img = cv2.imread(path) | |
| raw_img_shapes.append(img.shape) | |
| img = self.preprocess_img(img) | |
| imgs[j] = img | |
| # process batch output | |
| b_boxes, b_scores, b_classes, b_valid_detections = self.inference_model.predict(imgs) | |
| for k in range(len(paths)): | |
| num_boxes = b_valid_detections[k] | |
| raw_img_shape = raw_img_shapes[k] | |
| boxes = b_boxes[k, :num_boxes] | |
| classes = b_classes[k, :num_boxes] | |
| scores = b_scores[k, :num_boxes] | |
| # print(raw_img_shape) | |
| boxes[:, [0, 2]] = (boxes[:, [0, 2]] * raw_img_shape[1]) # w | |
| boxes[:, [1, 3]] = (boxes[:, [1, 3]] * raw_img_shape[0]) # h | |
| cls_names = [self.class_names[int(c)] for c in classes] | |
| # print(raw_img_shape, boxes.astype(int), cls_names, scores) | |
| img_path = paths[k] | |
| filename = img_path.split(os.sep)[-1].split('.')[0] | |
| # print(filename) | |
| output_path = os.path.join(pred_folder_path, filename+'.txt') | |
| with open(output_path, 'w') as pred_file: | |
| for box_idx in range(num_boxes): | |
| b = boxes[box_idx] | |
| pred_file.write(f'{cls_names[box_idx]} {scores[box_idx]} {b[0]} {b[1]} {b[2]} {b[3]}\n') | |
| def eval_map(self, gt_folder_path, pred_folder_path, temp_json_folder_path, output_files_path): | |
| """Process Gt""" | |
| ground_truth_files_list = glob(gt_folder_path + '/*.txt') | |
| assert len(ground_truth_files_list) > 0, 'no ground truth file' | |
| ground_truth_files_list.sort() | |
| # dictionary with counter per class | |
| gt_counter_per_class = {} | |
| counter_images_per_class = {} | |
| gt_files = [] | |
| for txt_file in ground_truth_files_list: | |
| file_id = txt_file.split(".txt", 1)[0] | |
| file_id = os.path.basename(os.path.normpath(file_id)) | |
| # check if there is a correspondent detection-results file | |
| temp_path = os.path.join(pred_folder_path, (file_id + ".txt")) | |
| assert os.path.exists(temp_path), "Error. File not found: {}\n".format(temp_path) | |
| lines_list = read_txt_to_list(txt_file) | |
| # create ground-truth dictionary | |
| bounding_boxes = [] | |
| is_difficult = False | |
| already_seen_classes = [] | |
| for line in lines_list: | |
| class_name, left, top, right, bottom = line.split() | |
| # check if class is in the ignore list, if yes skip | |
| bbox = left + " " + top + " " + right + " " + bottom | |
| bounding_boxes.append({"class_name": class_name, "bbox": bbox, "used": False}) | |
| # count that object | |
| if class_name in gt_counter_per_class: | |
| gt_counter_per_class[class_name] += 1 | |
| else: | |
| # if class didn't exist yet | |
| gt_counter_per_class[class_name] = 1 | |
| if class_name not in already_seen_classes: | |
| if class_name in counter_images_per_class: | |
| counter_images_per_class[class_name] += 1 | |
| else: | |
| # if class didn't exist yet | |
| counter_images_per_class[class_name] = 1 | |
| already_seen_classes.append(class_name) | |
| # dump bounding_boxes into a ".json" file | |
| new_temp_file = os.path.join(temp_json_folder_path, file_id+"_ground_truth.json") #TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json" | |
| gt_files.append(new_temp_file) | |
| with open(new_temp_file, 'w') as outfile: | |
| json.dump(bounding_boxes, outfile) | |
| gt_classes = list(gt_counter_per_class.keys()) | |
| # let's sort the classes alphabetically | |
| gt_classes = sorted(gt_classes) | |
| n_classes = len(gt_classes) | |
| print(gt_classes, gt_counter_per_class) | |
| """Process prediction""" | |
| dr_files_list = sorted(glob(os.path.join(pred_folder_path, '*.txt'))) | |
| for class_index, class_name in enumerate(gt_classes): | |
| bounding_boxes = [] | |
| for txt_file in dr_files_list: | |
| # the first time it checks if all the corresponding ground-truth files exist | |
| file_id = txt_file.split(".txt", 1)[0] | |
| file_id = os.path.basename(os.path.normpath(file_id)) | |
| temp_path = os.path.join(gt_folder_path, (file_id + ".txt")) | |
| if class_index == 0: | |
| if not os.path.exists(temp_path): | |
| error_msg = f"Error. File not found: {temp_path}\n" | |
| print(error_msg) | |
| lines = read_txt_to_list(txt_file) | |
| for line in lines: | |
| try: | |
| tmp_class_name, confidence, left, top, right, bottom = line.split() | |
| except ValueError: | |
| error_msg = f"""Error: File {txt_file} in the wrong format.\n | |
| Expected: <class_name> <confidence> <left> <top> <right> <bottom>\n | |
| Received: {line} \n""" | |
| print(error_msg) | |
| if tmp_class_name == class_name: | |
| # print("match") | |
| bbox = left + " " + top + " " + right + " " + bottom | |
| bounding_boxes.append({"confidence": confidence, "file_id": file_id, "bbox": bbox}) | |
| # sort detection-results by decreasing confidence | |
| bounding_boxes.sort(key=lambda x: float(x['confidence']), reverse=True) | |
| with open(temp_json_folder_path + "/" + class_name + "_dr.json", 'w') as outfile: | |
| json.dump(bounding_boxes, outfile) | |
| """ | |
| Calculate the AP for each class | |
| """ | |
| sum_AP = 0.0 | |
| ap_dictionary = {} | |
| # open file to store the output | |
| with open(output_files_path + "/output.txt", 'w') as output_file: | |
| output_file.write("# AP and precision/recall per class\n") | |
| count_true_positives = {} | |
| for class_index, class_name in enumerate(gt_classes): | |
| count_true_positives[class_name] = 0 | |
| """ | |
| Load detection-results of that class | |
| """ | |
| dr_file = temp_json_folder_path + "/" + class_name + "_dr.json" | |
| dr_data = json.load(open(dr_file)) | |
| """ | |
| Assign detection-results to ground-truth objects | |
| """ | |
| nd = len(dr_data) | |
| tp = [0] * nd # creates an array of zeros of size nd | |
| fp = [0] * nd | |
| for idx, detection in enumerate(dr_data): | |
| file_id = detection["file_id"] | |
| gt_file = temp_json_folder_path + "/" + file_id + "_ground_truth.json" | |
| ground_truth_data = json.load(open(gt_file)) | |
| ovmax = -1 | |
| gt_match = -1 | |
| # load detected object bounding-box | |
| bb = [float(x) for x in detection["bbox"].split()] | |
| for obj in ground_truth_data: | |
| # look for a class_name match | |
| if obj["class_name"] == class_name: | |
| bbgt = [float(x) for x in obj["bbox"].split()] | |
| bi = [max(bb[0], bbgt[0]), max(bb[1], bbgt[1]), min(bb[2], bbgt[2]), min(bb[3], bbgt[3])] | |
| iw = bi[2] - bi[0] + 1 | |
| ih = bi[3] - bi[1] + 1 | |
| if iw > 0 and ih > 0: | |
| # compute overlap (IoU) = area of intersection / area of union | |
| ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + \ | |
| (bbgt[2] - bbgt[0]+ 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih | |
| ov = iw * ih / ua | |
| if ov > ovmax: | |
| ovmax = ov | |
| gt_match = obj | |
| min_overlap = 0.5 | |
| if ovmax >= min_overlap: | |
| # if "difficult" not in gt_match: | |
| if not bool(gt_match["used"]): | |
| # true positive | |
| tp[idx] = 1 | |
| gt_match["used"] = True | |
| count_true_positives[class_name] += 1 | |
| # update the ".json" file | |
| with open(gt_file, 'w') as f: | |
| f.write(json.dumps(ground_truth_data)) | |
| else: | |
| # false positive (multiple detection) | |
| fp[idx] = 1 | |
| else: | |
| fp[idx] = 1 | |
| # compute precision/recall | |
| cumsum = 0 | |
| for idx, val in enumerate(fp): | |
| fp[idx] += cumsum | |
| cumsum += val | |
| print('fp ', cumsum) | |
| cumsum = 0 | |
| for idx, val in enumerate(tp): | |
| tp[idx] += cumsum | |
| cumsum += val | |
| print('tp ', cumsum) | |
| rec = tp[:] | |
| for idx, val in enumerate(tp): | |
| rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name] | |
| print('recall ', cumsum) | |
| prec = tp[:] | |
| for idx, val in enumerate(tp): | |
| prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx]) | |
| print('prec ', cumsum) | |
| ap, mrec, mprec = voc_ap(rec[:], prec[:]) | |
| sum_AP += ap | |
| text = "{0:.2f}%".format( | |
| ap * 100) + " = " + class_name + " AP " # class_name + " AP = {0:.2f}%".format(ap*100) | |
| print(text) | |
| ap_dictionary[class_name] = ap | |
| n_images = counter_images_per_class[class_name] | |
| # lamr, mr, fppi = log_average_miss_rate(np.array(prec), np.array(rec), n_images) | |
| # lamr_dictionary[class_name] = lamr | |
| """ | |
| Draw plot | |
| """ | |
| if True: | |
| plt.plot(rec, prec, '-o') | |
| # add a new penultimate point to the list (mrec[-2], 0.0) | |
| # since the last line segment (and respective area) do not affect the AP value | |
| area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]] | |
| area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]] | |
| plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r') | |
| # set window title | |
| fig = plt.gcf() # gcf - get current figure | |
| fig.canvas.set_window_title('AP ' + class_name) | |
| # set plot title | |
| plt.title('class: ' + text) | |
| # plt.suptitle('This is a somewhat long figure title', fontsize=16) | |
| # set axis titles | |
| plt.xlabel('Recall') | |
| plt.ylabel('Precision') | |
| # optional - set axes | |
| axes = plt.gca() # gca - get current axes | |
| axes.set_xlim([0.0, 1.0]) | |
| axes.set_ylim([0.0, 1.05]) # .05 to give some extra space | |
| # Alternative option -> wait for button to be pressed | |
| # while not plt.waitforbuttonpress(): pass # wait for key display | |
| # Alternative option -> normal display | |
| plt.show() | |
| # save the plot | |
| # fig.savefig(output_files_path + "/classes/" + class_name + ".png") | |
| # plt.cla() # clear axes for next plot | |
| # if show_animation: | |
| # cv2.destroyAllWindows() | |
| output_file.write("\n# mAP of all classes\n") | |
| mAP = sum_AP / n_classes | |
| text = "mAP = {0:.2f}%".format(mAP * 100) | |
| output_file.write(text + "\n") | |
| print(text) | |
| """ | |
| Count total of detection-results | |
| """ | |
| # iterate through all the files | |
| det_counter_per_class = {} | |
| for txt_file in dr_files_list: | |
| # get lines to list | |
| lines_list = read_txt_to_list(txt_file) | |
| for line in lines_list: | |
| class_name = line.split()[0] | |
| # check if class is in the ignore list, if yes skip | |
| # if class_name in args.ignore: | |
| # continue | |
| # count that object | |
| if class_name in det_counter_per_class: | |
| det_counter_per_class[class_name] += 1 | |
| else: | |
| # if class didn't exist yet | |
| det_counter_per_class[class_name] = 1 | |
| # print(det_counter_per_class) | |
| dr_classes = list(det_counter_per_class.keys()) | |
| """ | |
| Plot the total number of occurences of each class in the ground-truth | |
| """ | |
| if True: | |
| window_title = "ground-truth-info" | |
| plot_title = "ground-truth\n" | |
| plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)" | |
| x_label = "Number of objects per class" | |
| output_path = output_files_path + "/ground-truth-info.png" | |
| to_show = False | |
| plot_color = 'forestgreen' | |
| draw_plot_func( | |
| gt_counter_per_class, | |
| n_classes, | |
| window_title, | |
| plot_title, | |
| x_label, | |
| output_path, | |
| to_show, | |
| plot_color, | |
| '', | |
| ) | |
| """ | |
| Finish counting true positives | |
| """ | |
| for class_name in dr_classes: | |
| # if class exists in detection-result but not in ground-truth then there are no true positives in that class | |
| if class_name not in gt_classes: | |
| count_true_positives[class_name] = 0 | |
| # print(count_true_positives) | |
| """ | |
| Plot the total number of occurences of each class in the "detection-results" folder | |
| """ | |
| if True: | |
| window_title = "detection-results-info" | |
| # Plot title | |
| plot_title = "detection-results\n" | |
| plot_title += "(" + str(len(dr_files_list)) + " files and " | |
| count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values())) | |
| plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)" | |
| # end Plot title | |
| x_label = "Number of objects per class" | |
| output_path = output_files_path + "/detection-results-info.png" | |
| to_show = False | |
| plot_color = 'forestgreen' | |
| true_p_bar = count_true_positives | |
| draw_plot_func( | |
| det_counter_per_class, | |
| len(det_counter_per_class), | |
| window_title, | |
| plot_title, | |
| x_label, | |
| output_path, | |
| to_show, | |
| plot_color, | |
| true_p_bar | |
| ) | |
| """ | |
| Draw mAP plot (Show AP's of all classes in decreasing order) | |
| """ | |
| if True: | |
| window_title = "mAP" | |
| plot_title = "mAP = {0:.2f}%".format(mAP * 100) | |
| x_label = "Average Precision" | |
| output_path = output_files_path + "/mAP.png" | |
| to_show = True | |
| plot_color = 'royalblue' | |
| draw_plot_func( | |
| ap_dictionary, | |
| n_classes, | |
| window_title, | |
| plot_title, | |
| x_label, | |
| output_path, | |
| to_show, | |
| plot_color, | |
| "" | |
| ) | |
| def predict_raw(self, img_path): | |
| raw_img = cv2.imread(img_path) | |
| print('img shape: ', raw_img.shape) | |
| img = self.preprocess_img(raw_img) | |
| imgs = np.expand_dims(img, axis=0) | |
| return self.yolo_model.predict(imgs) | |
| def predict_nonms(self, img_path, iou_threshold=0.413, score_threshold=0.1): | |
| raw_img = cv2.imread(img_path) | |
| print('img shape: ', raw_img.shape) | |
| img = self.preprocess_img(raw_img) | |
| imgs = np.expand_dims(img, axis=0) | |
| yolov4_output = self.yolo_model.predict(imgs) | |
| output = yolov4_head(yolov4_output, self.num_classes, self.anchors, self.xyscale) | |
| pred_output = nms(output, self.img_size, self.num_classes, iou_threshold, score_threshold) | |
| pred_output = [p.numpy() for p in pred_output] | |
| detections = get_detection_data(img=raw_img, | |
| model_outputs=pred_output, | |
| class_names=self.class_names) | |
| draw_bbox(raw_img, detections, cmap=self.class_color, random_color=True) | |
| return detections | |