bird-detection / app.py
oliver9523's picture
Update app.py
6e0f810
import gradio as gr
import cv2
from geti_sdk.deployment import Deployment
from geti_sdk.utils import show_image_with_annotation_scene
# Step 1: Load the deployment
deployment = Deployment.from_folder("deployment")
deployment.load_inference_models(device="CPU")
def resize_image(image, target_dimension):
height, width = image.shape[:2]
max_dimension = max(height, width)
scale_factor = target_dimension / max_dimension
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
resized_image = cv2.resize(image, (new_width, new_height))
return resized_image
def infer(image=None):
if image is None:
return [None,'Error: No image provided']
image = resize_image(image, 1200)
prediction = deployment.infer(image)
output = show_image_with_annotation_scene(image, prediction, show_results=False)
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return [output, prediction.overview]
def run():
interface = gr.Interface(fn=infer,
inputs=['image'],
outputs=['image', 'text'],
examples=["no_bird.jpg", "bird_example1.jpg", "bird_example2.jpg", "bird_example3.jpg"])
interface.launch(server_name="0.0.0.0", server_port=7860)
# demo = gr.Interface(
# fn=predict,
# inputs=gr.inputs.Image(type="pil"),
# outputs=gr.outputs.Label(num_top_classes=3),
# )
# demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run()