Spaces:
Runtime error
Runtime error
| import tensorflow as tf | |
| from tensorflow.keras.layers import Dense, Embedding, GlobalAveragePooling1D | |
| from tensorflow.keras.models import Sequential | |
| from transformers import AutoTokenizer, TFAutoModelForSequenceClassification, pipeline | |
| # Sample data for sentiment analysis | |
| texts = ["I love deep learning!", "I hate Mondays.", "This movie is fantastic.", "The weather is terrible."] | |
| labels = [1, 0, 1, 0] # 1 for positive sentiment, 0 for negative sentiment | |
| # Load the tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') | |
| model = TFAutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) | |
| # Tokenize the texts | |
| inputs = tokenizer(texts, padding=True, truncation=True, return_tensors='tf') | |
| # Compile the model | |
| model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) | |
| # Train the model | |
| model.fit(inputs, labels, epochs=3, batch_size=2) | |
| # Save the model to Hugging Face Model Hub | |
| model.save_pretrained("./my-text-classifier") | |
| # Load the saved model from disk | |
| loaded_model = TFAutoModelForSequenceClassification.from_pretrained("./my-text-classifier") | |
| # Use the loaded model for prediction | |
| classifier = pipeline('text-classification', model=loaded_model, tokenizer=tokenizer) | |
| result = classifier("I'm feeling great!") | |
| print(result) | |