omni-zero-couples / pipeline.py
Omer Karisman
Omni Zero Couples
474d064
raw
history blame
99.1 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
import torchsde
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionModelWithProjection,
)
from diffusers.utils.import_utils import is_invisible_watermark_available
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import (
FromSingleFileMixin,
IPAdapterMixin,
StableDiffusionXLLoraLoaderMixin,
TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
USE_PEFT_BACKEND,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
if is_invisible_watermark_available():
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # pip install accelerate transformers safetensors diffusers
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> from transformers import DPTFeatureExtractor, DPTForDepthEstimation
>>> from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, AutoencoderKL
>>> from diffusers.utils import load_image
>>> depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
>>> feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
>>> controlnet = ControlNetModel.from_pretrained(
... "diffusers/controlnet-depth-sdxl-1.0-small",
... variant="fp16",
... use_safetensors=True,
... torch_dtype=torch.float16,
... ).to("cuda")
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
>>> pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
... "stabilityai/stable-diffusion-xl-base-1.0",
... controlnet=controlnet,
... vae=vae,
... variant="fp16",
... use_safetensors=True,
... torch_dtype=torch.float16,
... ).to("cuda")
>>> pipe.enable_model_cpu_offload()
>>> def get_depth_map(image):
... image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
... with torch.no_grad(), torch.autocast("cuda"):
... depth_map = depth_estimator(image).predicted_depth
... depth_map = torch.nn.functional.interpolate(
... depth_map.unsqueeze(1),
... size=(1024, 1024),
... mode="bicubic",
... align_corners=False,
... )
... depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
... depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
... depth_map = (depth_map - depth_min) / (depth_max - depth_min)
... image = torch.cat([depth_map] * 3, dim=1)
... image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
... image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
... return image
>>> prompt = "A robot, 4k photo"
>>> image = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/cat.png"
... ).resize((1024, 1024))
>>> controlnet_conditioning_scale = 0.5 # recommended for good generalization
>>> depth_image = get_depth_map(image)
>>> images = pipe(
... prompt,
... image=image,
... control_image=depth_image,
... strength=0.99,
... num_inference_steps=50,
... controlnet_conditioning_scale=controlnet_conditioning_scale,
... ).images
>>> images[0].save(f"robot_cat.png")
```
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
class BatchedBrownianTree:
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
def __init__(self, x, t0, t1, seed=None, **kwargs):
self.cpu_tree = True
if "cpu" in kwargs:
self.cpu_tree = kwargs.pop("cpu")
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get('w0', torch.zeros_like(x))
if seed is None:
seed = torch.randint(0, 2 ** 63 - 1, []).item()
self.batched = True
try:
assert len(seed) == x.shape[0]
w0 = w0[0]
except TypeError:
seed = [seed]
self.batched = False
if self.cpu_tree:
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
else:
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
@staticmethod
def sort(a, b):
return (a, b, 1) if a < b else (b, a, -1)
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
if self.cpu_tree:
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
else:
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
return w if self.batched else w[0]
class BrownianTreeNoiseSampler:
"""A noise sampler backed by a torchsde.BrownianTree.
Args:
x (Tensor): The tensor whose shape, device and dtype to use to generate
random samples.
sigma_min (float): The low end of the valid interval.
sigma_max (float): The high end of the valid interval.
seed (int or List[int]): The random seed. If a list of seeds is
supplied instead of a single integer, then the noise sampler will
use one BrownianTree per batch item, each with its own seed.
transform (callable): A function that maps sigma to the sampler's
internal timestep.
"""
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
self.transform = transform
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
def __call__(self, sigma, sigma_next):
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
class OmniZeroPipeline(
DiffusionPipeline,
StableDiffusionMixin,
TextualInversionLoaderMixin,
StableDiffusionXLLoraLoaderMixin,
FromSingleFileMixin,
IPAdapterMixin,
):
r"""
Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
The pipeline also inherits the following loading methods:
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
text_encoder_2 ([` CLIPTextModelWithProjection`]):
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
specifically the
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
tokenizer_2 (`CLIPTokenizer`):
Second Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
as a list, the outputs from each ControlNet are added together to create one combined additional
conditioning.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
`stabilityai/stable-diffusion-xl-base-1-0`.
add_watermarker (`bool`, *optional*):
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
watermarker will be used.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
_optional_components = [
"tokenizer",
"tokenizer_2",
"text_encoder",
"text_encoder_2",
"feature_extractor",
"image_encoder",
]
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
unet: UNet2DConditionModel,
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
scheduler: KarrasDiffusionSchedulers,
requires_aesthetics_score: bool = False,
force_zeros_for_empty_prompt: bool = True,
add_watermarker: Optional[bool] = None,
feature_extractor: CLIPImageProcessor = None,
image_encoder: CLIPVisionModelWithProjection = None,
):
super().__init__()
if isinstance(controlnet, (list, tuple)):
controlnet = MultiControlNetModel(controlnet)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
)
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
if add_watermarker:
self.watermark = StableDiffusionXLWatermarker()
else:
self.watermark = None
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
self.ays_noise_sigmas = {"SD1": [14.6146412293, 6.4745760956, 3.8636745985, 2.6946151520, 1.8841921177, 1.3943805092, 0.9642583904, 0.6523686016, 0.3977456272, 0.1515232662, 0.0291671582],
"SDXL":[14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289, 0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582],
"SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]}
@staticmethod
def _loglinear_interp(t_steps, num_steps):
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
return np.exp(new_ys)[::-1].copy()
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(
self,
prompt: str,
prompt_2: Optional[str] = None,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
"""
device = device or self._execution_device
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if self.text_encoder is not None:
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
else:
scale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None:
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
else:
scale_lora_layers(self.text_encoder_2, lora_scale)
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# Define tokenizers and text encoders
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
text_encoders = (
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
)
if prompt_embeds is None:
prompt_2 = prompt_2 or prompt
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
# textual inversion: process multi-vector tokens if necessary
prompt_embeds_list = []
prompts = [prompt, prompt_2]
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, tokenizer)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
if clip_skip is None:
prompt_embeds = prompt_embeds.hidden_states[-2]
else:
# "2" because SDXL always indexes from the penultimate layer.
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
# get unconditional embeddings for classifier free guidance
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
elif do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt_2 = negative_prompt_2 or negative_prompt
# normalize str to list
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
negative_prompt_2 = (
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
)
uncond_tokens: List[str]
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = [negative_prompt, negative_prompt_2]
negative_prompt_embeds_list = []
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
negative_prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
negative_prompt_embeds_list.append(negative_prompt_embeds)
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
if self.text_encoder_2 is not None:
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
else:
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
if self.text_encoder_2 is not None:
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
else:
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
if do_classifier_free_guidance:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
if self.text_encoder is not None:
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None:
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder_2, lora_scale)
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
# Copied from ..stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None, unconditional_noising_factor=1.0):
dtype = next(self.image_encoder.parameters()).dtype
needs_encoding = not isinstance(image, torch.Tensor)
if needs_encoding:
image = self.feature_extractor(image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=dtype)
avg_image = torch.mean(image, dim=0, keepdim=True).to(dtype=torch.float32)
seed = int(torch.sum(avg_image).item()) % 1000000007
torch.manual_seed(seed)
additional_noise_for_uncond = torch.rand_like(image) * unconditional_noising_factor
if output_hidden_states:
if needs_encoding:
image_encoded = self.image_encoder(image, output_hidden_states=True)
image_enc_hidden_states = image_encoded.hidden_states[-2]
else:
image_enc_hidden_states = image.unsqueeze(0).unsqueeze(0)
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
if needs_encoding:
uncond_image_encoded = self.image_encoder(additional_noise_for_uncond, output_hidden_states=True)
uncond_image_enc_hidden_states = uncond_image_encoded.hidden_states[-2]
else:
uncond_image_enc_hidden_states = additional_noise_for_uncond.unsqueeze(0).unsqueeze(0)
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
num_images_per_prompt, dim=0
)
return image_enc_hidden_states, uncond_image_enc_hidden_states
else:
if needs_encoding:
image_encoded = self.image_encoder(image)
image_embeds = image_encoded.image_embeds
else:
image_embeds = image.unsqueeze(0).unsqueeze(0)
if needs_encoding:
uncond_image_encoded = self.image_encoder(additional_noise_for_uncond)
uncond_image_embeds = uncond_image_encoded.image_embeds
else:
uncond_image_embeds = additional_noise_for_uncond.unsqueeze(0).unsqueeze(0)
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
uncond_image_embeds = uncond_image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
return image_embeds, uncond_image_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
def prepare_ip_adapter_image_embeds(
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
):
if ip_adapter_image_embeds is None:
if not isinstance(ip_adapter_image, list):
ip_adapter_image = [ip_adapter_image]
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
raise ValueError(
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
)
image_embeds = []
for single_ip_adapter_image, image_proj_layer in zip(
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
):
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
single_image_embeds, single_negative_image_embeds = self.encode_image(
single_ip_adapter_image, device, 1, output_hidden_state
)
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
single_negative_image_embeds = torch.stack(
[single_negative_image_embeds] * num_images_per_prompt, dim=0
)
if do_classifier_free_guidance:
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
single_image_embeds = single_image_embeds.to(device)
image_embeds.append(single_image_embeds)
else:
repeat_dims = [1]
image_embeds = []
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
single_negative_image_embeds = single_negative_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
else:
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
image_embeds.append(single_image_embeds)
return image_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
prompt_2,
image,
strength,
num_inference_steps,
callback_steps,
negative_prompt=None,
negative_prompt_2=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
ip_adapter_image=None,
ip_adapter_image_embeds=None,
controlnet_conditioning_scale=1.0,
control_guidance_start=0.0,
control_guidance_end=1.0,
callback_on_step_end_tensor_inputs=None,
):
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
if num_inference_steps is None:
raise ValueError("`num_inference_steps` cannot be None.")
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
raise ValueError(
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
f" {type(num_inference_steps)}."
)
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
# `prompt` needs more sophisticated handling when there are multiple
# conditionings.
if isinstance(self.controlnet, MultiControlNetModel):
if isinstance(prompt, list):
logger.warning(
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
" prompts. The conditionings will be fixed across the prompts."
)
# Check `image`
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
)
if (
isinstance(self.controlnet, ControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel)
):
self.check_image(image, prompt, prompt_embeds)
elif (
isinstance(self.controlnet, MultiControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
):
if not isinstance(image, list):
raise TypeError("For multiple controlnets: `image` must be type `list`")
# When `image` is a nested list:
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
elif any(isinstance(i, list) for i in image):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif len(image) != len(self.controlnet.nets):
raise ValueError(
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
)
for image_ in image:
self.check_image(image_, prompt, prompt_embeds)
else:
assert False
# Check `controlnet_conditioning_scale`
if (
isinstance(self.controlnet, ControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel)
):
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
elif (
isinstance(self.controlnet, MultiControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
):
if isinstance(controlnet_conditioning_scale, list):
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
self.controlnet.nets
):
raise ValueError(
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
" the same length as the number of controlnets"
)
else:
assert False
if not isinstance(control_guidance_start, (tuple, list)):
control_guidance_start = [control_guidance_start]
if not isinstance(control_guidance_end, (tuple, list)):
control_guidance_end = [control_guidance_end]
if len(control_guidance_start) != len(control_guidance_end):
raise ValueError(
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
)
if isinstance(self.controlnet, MultiControlNetModel):
if len(control_guidance_start) != len(self.controlnet.nets):
raise ValueError(
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
)
for start, end in zip(control_guidance_start, control_guidance_end):
if start >= end:
raise ValueError(
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
)
if start < 0.0:
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
if end > 1.0:
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
raise ValueError(
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
)
if ip_adapter_image_embeds is not None:
if not isinstance(ip_adapter_image_embeds, list):
raise ValueError(
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
)
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
raise ValueError(
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
)
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
def check_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_np = isinstance(image, np.ndarray)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
if (
not image_is_pil
and not image_is_tensor
and not image_is_np
and not image_is_pil_list
and not image_is_tensor_list
and not image_is_np_list
):
raise TypeError(
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
)
if image_is_pil:
image_batch_size = 1
else:
image_batch_size = len(image)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
def prepare_control_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps, num_inference_steps - t_start
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
def prepare_latents(
self, image, timestep, batch_size, num_channels_latents, height, width, dtype, device, generator=None, add_noise=True, seed=None
):
if image is None:
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
init_latents = torch.zeros(shape, device=device, dtype=dtype)
else:
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
latents_mean = latents_std = None
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
# Offload text encoder if `enable_model_cpu_offload` was enabled
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.text_encoder_2.to("cpu")
torch.cuda.empty_cache()
image = image.to(device=device, dtype=dtype)
if image.shape[1] == 4:
init_latents = image
else:
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.config.force_upcast:
image = image.float()
self.vae.to(dtype=torch.float32)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
elif isinstance(generator, list):
init_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
if self.vae.config.force_upcast:
self.vae.to(dtype)
init_latents = init_latents.to(dtype)
if latents_mean is not None and latents_std is not None:
latents_mean = latents_mean.to(device=self.device, dtype=dtype)
latents_std = latents_std.to(device=self.device, dtype=dtype)
init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std
else:
init_latents = self.vae.config.scaling_factor * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
if add_noise:
return self.add_noise(init_latents, timestep, device, dtype, generator, seed)
latents = init_latents
return latents
def add_noise(self, latents, timestep, device, dtype, generator=None, seed=None):
if seed is not None:
if device == "cpu":
generator = torch.manual_seed(seed)
else:
generator = torch.cuda.manual_seed(seed)
noise = torch.randn(
torch.Size(latents.shape),
dtype=torch.float32,
layout=torch.strided,
generator=generator,
device=device,
).to(device)
new_latents = self.scheduler.add_noise(
latents.to(device), noise, timestep
)
return new_latents.to(device, dtype=dtype)
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
def _get_add_time_ids(
self,
original_size,
crops_coords_top_left,
target_size,
aesthetic_score,
negative_aesthetic_score,
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype,
text_encoder_projection_dim=None,
):
if self.config.requires_aesthetics_score:
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
add_neg_time_ids = list(
negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
)
else:
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
passed_add_embed_dim = (
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if (
expected_add_embed_dim > passed_add_embed_dim
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
):
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
)
elif (
expected_add_embed_dim < passed_add_embed_dim
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
):
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
)
elif expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
return add_time_ids, add_neg_time_ids
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
@property
def guidance_scale(self):
return self._guidance_scale
@property
def clip_skip(self):
return self._clip_skip
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def cross_attention_kwargs(self):
return self._cross_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
mask_image: PipelineImageInput = None,
i2i_mask_guidance_start: Optional[float] = 0.0,
i2i_mask_guidance_end: Optional[float] = 1.0,
control_image: PipelineImageInput = None,
control_mask = None,
identity_control_indices = None,
height: Optional[int] = None,
width: Optional[int] = None,
strength: float = 0.8,
num_inference_steps: int = 50,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
seed: Optional[int] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
original_size: Tuple[int, int] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Tuple[int, int] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
aesthetic_score: float = 6.0,
negative_aesthetic_score: float = 2.5,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The initial image will be used as the starting point for the image generation process. Can also accept
image latents as `image`, if passing latents directly, it will not be encoded again.
control_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
specified in init, images must be passed as a list such that each element of the list can be correctly
batched for input to a single controlnet.
height (`int`, *optional*, defaults to the size of control_image):
The height in pixels of the generated image. Anything below 512 pixels won't work well for
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
and checkpoints that are not specifically fine-tuned on low resolutions.
width (`int`, *optional*, defaults to the size of control_image):
The width in pixels of the generated image. Anything below 512 pixels won't work well for
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
and checkpoints that are not specifically fine-tuned on low resolutions.
strength (`float`, *optional*, defaults to 0.8):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
provided, embeddings are computed from the `ip_adapter_image` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
corresponding scale as a list.
guess_mode (`bool`, *optional*, defaults to `False`):
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
The percentage of total steps at which the controlnet starts applying.
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
The percentage of total steps at which the controlnet stops applying.
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
For most cases, `target_size` should be set to the desired height and width of the generated image. If
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
To negatively condition the generation process based on a target image resolution. It should be as same
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
aesthetic_score (`float`, *optional*, defaults to 6.0):
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
simulate an aesthetic score of the generated image by influencing the negative text condition.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
containing the output images.
"""
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = (
mult * [control_guidance_start],
mult * [control_guidance_end],
)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
control_image,
strength,
num_inference_steps,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
ip_adapter_image,
ip_adapter_image_embeds,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
global_pool_conditions = (
controlnet.config.global_pool_conditions
if isinstance(controlnet, ControlNetModel)
else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions
# 3.1. Encode input prompt
text_encoder_lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt,
prompt_2,
device,
num_images_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
)
# 3.2 Encode ip_adapter_image
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
# 4. Prepare image and controlnet_conditioning_image
if image is not None:
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
else:
strength = 1.0
if mask_image is not None:
mask_image = self.image_processor.preprocess(mask_image, height=height, width=width).to(dtype=torch.float32)
if isinstance(controlnet, ControlNetModel):
control_image = self.prepare_control_image(
image=control_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=self.do_classifier_free_guidance,
guess_mode=guess_mode,
)
height, width = control_image.shape[-2:]
elif isinstance(controlnet, MultiControlNetModel):
control_images = []
for control_image_ in control_image:
control_image_ = self.prepare_control_image(
image=control_image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=self.do_classifier_free_guidance,
guess_mode=guess_mode,
)
control_images.append(control_image_)
control_image = control_images
height, width = control_image[0].shape[-2:]
else:
assert False
# 4.1 Region control
controlnet_masks = []
if control_mask is not None:
for mask in control_mask:
mask = np.array(mask)
mask_tensor = torch.from_numpy(mask).to(device=device, dtype=prompt_embeds.dtype)
mask_tensor = mask_tensor[:, :, 0] / 255.
mask_tensor = mask_tensor[None, None]
h, w = mask_tensor.shape[-2:]
control_mask_list = []
for scale in [8, 8, 8, 16, 16, 16, 32, 32, 32]:
# Python uses IEEE 754 rounding rules, we need to add a small value to round like the unet model
w_n = round((w + 0.01) / 8)
h_n = round((h + 0.01) / 8)
if scale in [16, 32]:
w_n = round((w_n + 0.01) / 2)
h_n = round((h_n + 0.01) / 2)
if scale == 32:
w_n = round((w_n + 0.01) / 2)
h_n = round((h_n + 0.01) / 2)
scale_mask_weight_image_tensor = F.interpolate(
mask_tensor,(h_n, w_n), mode='bilinear')
control_mask_list.append(scale_mask_weight_image_tensor)
controlnet_masks.append(control_mask_list)
# 5. Prepare timesteps
full_num_inference_steps = int(num_inference_steps / strength) if strength > 0 else num_inference_steps
if timesteps is None:
self.scheduler.set_timesteps(full_num_inference_steps + 1, device=device)
sigmas = self._loglinear_interp(self.ays_noise_sigmas["SDXL"], full_num_inference_steps + 1)
sigmas[-1] = 0
log_sigmas = np.log(np.array((1 - self.scheduler.alphas_cumprod) / self.scheduler.alphas_cumprod) ** 0.5)
timesteps = np.array([self.scheduler._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
timesteps = timesteps[-(num_inference_steps + 1):-1]
if hasattr(self.scheduler, "sigmas"):
self.scheduler.sigmas = torch.from_numpy(sigmas)[-(num_inference_steps + 1):]
self.scheduler.timesteps = torch.from_numpy(timesteps).to(self.device, dtype=torch.int64)
self.scheduler.num_inference_steps = len(self.scheduler.timesteps)
else:
if "timesteps" in inspect.signature(self.scheduler.set_timesteps).parameters:
self.scheduler.set_timesteps(full_num_inference_steps + 1, timesteps=timesteps, device=device)
else:
self.scheduler.set_timesteps(full_num_inference_steps + 1, device=device)
latent_timestep = self.scheduler.timesteps[:1].repeat(batch_size * num_images_per_prompt)
self._num_timesteps = len(self.scheduler.timesteps)
# 6. Prepare latent variables
if latents is None:
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
image,
latent_timestep,
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
True,
seed
)
untouched_latents = self.prepare_latents(
image,
latent_timestep,
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
False,
seed,
)
if mask_image is not None:
#resize i2i mask to the same size as the latents and reduce it to 1 channel
mask_image = mask_image[:, 0:1, :, :]
mask_image = F.interpolate(mask_image, (latents.shape[-2], latents.shape[-1]), mode="bilinear")
mask_image = mask_image.to(device=device, dtype=prompt_embeds.dtype)
else:
untouched_latents = latents.clone()
if hasattr(self.scheduler, "sigmas"):
sigmas = self.scheduler.sigmas
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
seeds = [seed] * len(latents) if seed is not None else generator.seed()
brownian_tree_noise_sampler = BrownianTreeNoiseSampler(latents, sigma_min, sigma_max, seed=seeds, cpu=False)
else:
brownian_tree_noise_sampler = None
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
# 7.2 Prepare added time ids & embeddings
if isinstance(control_image, list):
original_size = original_size or control_image[0].shape[-2:]
else:
original_size = original_size or control_image.shape[-2:]
target_size = target_size or (height, width)
if negative_original_size is None:
negative_original_size = original_size
if negative_target_size is None:
negative_target_size = target_size
add_text_embeds = pooled_prompt_embeds
if self.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
aesthetic_score,
negative_aesthetic_score,
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
# controlnet(s) inference
if guess_mode and self.do_classifier_free_guidance:
# Infer ControlNet only for the conditional batch.
control_model_input = latents
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
controlnet_added_cond_kwargs = {
"text_embeds": add_text_embeds.chunk(2)[1],
"time_ids": add_time_ids.chunk(2)[1],
}
else:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
controlnet_added_cond_kwargs = added_cond_kwargs
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
if ip_adapter_image_embeds is None and ip_adapter_image is not None:
encoder_hidden_states = self.unet.process_encoder_hidden_states(prompt_embeds, {"image_embeds": image_embeds})
ip_adapter_image_embeds = encoder_hidden_states[1]
down_block_res_samples = None
mid_block_res_sample = None
for controlnet_index in range(len(self.controlnet.nets)):
ip_adapter_index = next((y for x, y in identity_control_indices if x == controlnet_index), None)
if ip_adapter_index is not None:
control_prompt_embeds = ip_adapter_image_embeds[ip_adapter_index].squeeze(1)
else:
control_prompt_embeds = controlnet_prompt_embeds
down_samples, mid_sample = self.controlnet.nets[controlnet_index](
control_model_input,
t,
encoder_hidden_states=control_prompt_embeds,
controlnet_cond=control_image[controlnet_index],
conditioning_scale=cond_scale[controlnet_index],
guess_mode=guess_mode,
added_cond_kwargs=controlnet_added_cond_kwargs,
return_dict=False,
)
if len(controlnet_masks) > controlnet_index and controlnet_masks[controlnet_index] is not None:
down_samples = [
down_sample * mask_weight
for down_sample, mask_weight in zip(down_samples, controlnet_masks[controlnet_index])
]
mid_sample *= controlnet_masks[controlnet_index][-1]
if down_block_res_samples is None and mid_block_res_sample is None:
down_block_res_samples = down_samples
mid_block_res_sample = mid_sample
else:
down_block_res_samples = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
]
mid_block_res_sample += mid_sample
if guess_mode and self.do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
added_cond_kwargs["image_embeds"] = image_embeds
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=self.cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
# check if scheduler.step supports variance noise
if "variance_noise" in inspect.signature(self.scheduler.step).parameters and brownian_tree_noise_sampler is not None:
sigmas = self.scheduler.sigmas
noise = brownian_tree_noise_sampler(sigmas[i], sigmas[i + 1]).to(device=device, dtype=latents.dtype)
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False, variance_noise=noise)[0]
else:
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if image is not None and mask_image is not None:
timesteps_count = len(timesteps) - 1
i2i_mask_guidance_end_index = int(i2i_mask_guidance_end * timesteps_count)
i2i_mask_guidance_start_index = int(i2i_mask_guidance_start * timesteps_count)
if i < i2i_mask_guidance_end_index and i >= i2i_mask_guidance_start_index:
inpaint_timesteps = torch.tensor([t-1]).repeat(
batch_size * num_images_per_prompt
)
new_noisy_latents = self.add_noise(untouched_latents, inpaint_timesteps, device, latents.dtype, generator, seed)
latents = torch.where(mask_image != 1, new_noisy_latents, latents)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# If we do sequential model offloading, let's offload unet and controlnet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.unet.to("cpu")
self.controlnet.to("cpu")
torch.cuda.empty_cache()
if not output_type == "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
# unscale/denormalize the latents
# denormalize with the mean and std if available and not None
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
if has_latents_mean and has_latents_std:
latents_mean = (
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents_std = (
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
else:
latents = latents / self.vae.config.scaling_factor
image = self.vae.decode(latents, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
else:
image = latents
return StableDiffusionXLPipelineOutput(images=image)
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image)