Spaces:
Running
on
Zero
Running
on
Zero
| from abc import ABC, abstractmethod | |
| from typing import Tuple | |
| import torch | |
| from einops import rearrange | |
| from torch import Tensor | |
| def latent_to_pixel_coords( | |
| latent_coords: Tensor, scale_factors: Tuple[int, int, int], causal_fix: bool = False | |
| ) -> Tensor: | |
| """ | |
| Converts latent coordinates to pixel coordinates by scaling them according to the VAE's | |
| configuration. | |
| Args: | |
| latent_coords (Tensor): A tensor of shape [batch_size, 3, num_latents] | |
| containing the latent corner coordinates of each token. | |
| scale_factors (Tuple[int, int, int]): The scale factors of the VAE's latent space. | |
| causal_fix (bool): Whether to take into account the different temporal scale | |
| of the first frame. Default = False for backwards compatibility. | |
| Returns: | |
| Tensor: A tensor of pixel coordinates corresponding to the input latent coordinates. | |
| """ | |
| pixel_coords = ( | |
| latent_coords | |
| * torch.tensor(scale_factors, device=latent_coords.device)[None, :, None] | |
| ) | |
| if causal_fix: | |
| # Fix temporal scale for first frame to 1 due to causality | |
| pixel_coords[:, 0] = (pixel_coords[:, 0] + 1 - scale_factors[0]).clamp(min=0) | |
| return pixel_coords | |
| class Patchifier(ABC): | |
| def __init__(self, patch_size: int): | |
| super().__init__() | |
| self._patch_size = (1, patch_size, patch_size) | |
| def patchify( | |
| self, latents: Tensor, frame_rates: Tensor, scale_grid: bool | |
| ) -> Tuple[Tensor, Tensor]: | |
| pass | |
| def unpatchify( | |
| self, | |
| latents: Tensor, | |
| output_height: int, | |
| output_width: int, | |
| output_num_frames: int, | |
| out_channels: int, | |
| ) -> Tuple[Tensor, Tensor]: | |
| pass | |
| def patch_size(self): | |
| return self._patch_size | |
| def get_latent_coords( | |
| self, latent_num_frames, latent_height, latent_width, batch_size, device | |
| ): | |
| """ | |
| Return a tensor of shape [batch_size, 3, num_patches] containing the | |
| top-left corner latent coordinates of each latent patch. | |
| The tensor is repeated for each batch element. | |
| """ | |
| latent_sample_coords = torch.meshgrid( | |
| torch.arange(0, latent_num_frames, self._patch_size[0], device=device), | |
| torch.arange(0, latent_height, self._patch_size[1], device=device), | |
| torch.arange(0, latent_width, self._patch_size[2], device=device), | |
| indexing="ij", | |
| ) | |
| latent_sample_coords = torch.stack(latent_sample_coords, dim=0) | |
| latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) | |
| latent_coords = rearrange( | |
| latent_coords, "b c f h w -> b c (f h w)", b=batch_size | |
| ) | |
| return latent_coords | |
| class SymmetricPatchifier(Patchifier): | |
| def patchify( | |
| self, | |
| latents: Tensor, | |
| ) -> Tuple[Tensor, Tensor]: | |
| b, _, f, h, w = latents.shape | |
| latent_coords = self.get_latent_coords(f, h, w, b, latents.device) | |
| latents = rearrange( | |
| latents, | |
| "b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)", | |
| p1=self._patch_size[0], | |
| p2=self._patch_size[1], | |
| p3=self._patch_size[2], | |
| ) | |
| return latents, latent_coords | |
| def unpatchify( | |
| self, | |
| latents: Tensor, | |
| output_height: int, | |
| output_width: int, | |
| output_num_frames: int, | |
| out_channels: int, | |
| ) -> Tuple[Tensor, Tensor]: | |
| output_height = output_height // self._patch_size[1] | |
| output_width = output_width // self._patch_size[2] | |
| latents = rearrange( | |
| latents, | |
| "b (f h w) (c p q) -> b c f (h p) (w q) ", | |
| f=output_num_frames, | |
| h=output_height, | |
| w=output_width, | |
| p=self._patch_size[1], | |
| q=self._patch_size[2], | |
| ) | |
| return latents | |