Spaces:
Sleeping
Sleeping
from gpt_index import SimpleDirectoryReader, GPTListIndex, GPTSimpleVectorIndex, LLMPredictor, PromptHelper | |
from langchain import OpenAI | |
import gradio as gr | |
import sys | |
import os | |
from dotenv import load_dotenv | |
load_dotenv() | |
def construct_index(directory_path): | |
max_input_size = 4096 | |
num_outputs = 1024 | |
max_chunk_overlap = 20 | |
chunk_size_limit = 600 | |
prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit) | |
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.7, model_name="gpt-3.5-turbo", max_tokens=num_outputs)) | |
documents = SimpleDirectoryReader(directory_path).load_data() | |
index = GPTSimpleVectorIndex(documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper) | |
index.save_to_disk('index.json') | |
return index | |
def chatbot(input_text): | |
index = GPTSimpleVectorIndex.load_from_disk('index.json') | |
response = index.query(input_text, response_mode="compact") | |
return response.response | |
iface = gr.Interface(fn=chatbot, | |
inputs=gr.inputs.Textbox(lines=7, label="Enter your text"), | |
outputs="text", | |
title="Custom-trained AI Chatbot") | |
# index = construct_index("docs") | |
iface.launch() | |