|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
from PIL import Image |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
LORA=False |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.max_memory_allocated(device=device) |
|
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe = pipe.to(device) |
|
else: |
|
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True) |
|
pipe = pipe.to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
|
|
|
|
|
|
|
|
def infer(prompt, negative_prompt, seed, randomize_seed, image_style,cfg,lora_scale): |
|
pipe.unload_lora_weights() |
|
if image_style == "No style": |
|
pipe.unload_lora_weights() |
|
|
|
elif image_style == "style_detailed": |
|
pipe.load_lora_weights("ohkarim/LoRA_logos", weight_name="OH_logos.safetensors", adapter_name="OH_logos") |
|
prompt=prompt+", detailed, close up, unique background color, OH_logos" |
|
|
|
elif image_style == "style_blacknwhite": |
|
pipe.load_lora_weights("ohkarim/lora_logo_blacknwhite", weight_name="bel_blacknwhite_lora.safetensors", adapter_name="bel_blacknwhite") |
|
prompt=prompt+", black and white, balck and white, minimalist, unique background color, bel_blacknwhite" |
|
|
|
elif image_style == "style_cartoon": |
|
pipe.load_lora_weights("ohkarim/lora_logo_modern", weight_name="lora_modern.safetensors", adapter_name="oh_bel_modern") |
|
prompt=prompt+", simple, modern, unique background color, oh_bel_modern" |
|
|
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
griddd = [] |
|
for _ in range(4): |
|
image = pipe( |
|
prompt = prompt, |
|
negative_prompt = negative_prompt, |
|
cross_attention_kwargs={"scale": lora_scale}, |
|
guidance_scale = cfg, |
|
num_inference_steps = 20, |
|
width = 512, |
|
height = 512, |
|
generator = generator |
|
).images[0] |
|
griddd.append(image) |
|
|
|
return griddd |
|
|
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
if torch.cuda.is_available(): |
|
power_device = "GPU" |
|
else: |
|
power_device = "CPU" |
|
|
|
|
|
|
|
def read_css_from_file(filename): |
|
with open(filename, "r") as file: |
|
return file.read() |
|
|
|
|
|
css = read_css_from_file("style.css") |
|
|
|
PTI_SD_DESCRIPTION = ''' |
|
<div id="content_align"> |
|
<span style="color:darkred;font-size:32px;font-weight:bold"> |
|
Create your own logo now! |
|
</span> |
|
</div> |
|
<div id="content_align"> |
|
<span style="color:blue;font-size:16px;font-weight:bold"> |
|
There is 3 styles so far, detailed, black & white and cartoon |
|
</span> |
|
</div> |
|
<div id="content_align" style="margin-top: 10px;"> |
|
</div> |
|
''' |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(PTI_SD_DESCRIPTION) |
|
with gr.Row(): |
|
with gr.Column(): |
|
text_prompt = gr.Textbox(label="Input Prompt", placeholder="Example: logo of a coffee shop, cup of coffee, mug, brown shades ", lines=2) |
|
negative_prompt = gr.Textbox(label="Negative Prompt (optional)", placeholder="Example: blurry, unfocused, complicated", lines=2) |
|
image_style = gr.Dropdown(label="Choose a style", choices=["No style", "style_detailed", "style_blacknwhite", "style_cartoon"], value="No LoRA") |
|
|
|
with gr.Column(): |
|
cfg = gr.Slider(label="Prompt guidance", minimum=1, maximum=20, step=1, value=4) |
|
lora_scale = gr.Slider(label="Style guidance", minimum=0, maximum=2, step=0.01, value=0.9) |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
generate_button = gr.Button("Generate Image", variant='primary') |
|
|
|
with gr.Row(): |
|
output_image1 = gr.Image(type="pil", label="Image 1", width=256, height=400) |
|
output_image2 = gr.Image(type="pil", label="Image 2", width=256, height=400) |
|
output_image3 = gr.Image(type="pil", label="Image 3", width=256, height=400) |
|
output_image4 = gr.Image(type="pil", label="Image 4", width=256, height=400) |
|
|
|
generate_button.click( |
|
fn = infer, |
|
inputs = [text_prompt, negative_prompt, seed, randomize_seed,image_style,cfg,lora_scale], |
|
outputs = [output_image1,output_image2,output_image3,output_image4], |
|
show_progress=True |
|
) |
|
demo.queue().launch() |