Spaces:
Running
on
Zero
Running
on
Zero
"""k-diffusion transformer diffusion models, version 2. | |
Codes adopted from https://github.com/crowsonkb/k-diffusion | |
""" | |
import math | |
import torch | |
import torch._dynamo | |
from torch import nn | |
from . import flags | |
if flags.get_use_compile(): | |
torch._dynamo.config.suppress_errors = True | |
def rotate_half(x): | |
x1, x2 = x[..., 0::2], x[..., 1::2] | |
x = torch.stack((-x2, x1), dim=-1) | |
*shape, d, r = x.shape | |
return x.view(*shape, d * r) | |
def apply_rotary_emb(freqs, t, start_index=0, scale=1.0): | |
freqs = freqs.to(t) | |
rot_dim = freqs.shape[-1] | |
end_index = start_index + rot_dim | |
assert rot_dim <= t.shape[-1], f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}" | |
t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:] | |
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) | |
return torch.cat((t_left, t, t_right), dim=-1) | |
def centers(start, stop, num, dtype=None, device=None): | |
edges = torch.linspace(start, stop, num + 1, dtype=dtype, device=device) | |
return (edges[:-1] + edges[1:]) / 2 | |
def make_grid(h_pos, w_pos): | |
grid = torch.stack(torch.meshgrid(h_pos, w_pos, indexing='ij'), dim=-1) | |
h, w, d = grid.shape | |
return grid.view(h * w, d) | |
def bounding_box(h, w, pixel_aspect_ratio=1.0): | |
# Adjusted dimensions | |
w_adj = w | |
h_adj = h * pixel_aspect_ratio | |
# Adjusted aspect ratio | |
ar_adj = w_adj / h_adj | |
# Determine bounding box based on the adjusted aspect ratio | |
y_min, y_max, x_min, x_max = -1.0, 1.0, -1.0, 1.0 | |
if ar_adj > 1: | |
y_min, y_max = -1 / ar_adj, 1 / ar_adj | |
elif ar_adj < 1: | |
x_min, x_max = -ar_adj, ar_adj | |
return y_min, y_max, x_min, x_max | |
def make_axial_pos(h, w, pixel_aspect_ratio=1.0, align_corners=False, dtype=None, device=None): | |
y_min, y_max, x_min, x_max = bounding_box(h, w, pixel_aspect_ratio) | |
if align_corners: | |
h_pos = torch.linspace(y_min, y_max, h, dtype=dtype, device=device) | |
w_pos = torch.linspace(x_min, x_max, w, dtype=dtype, device=device) | |
else: | |
h_pos = centers(y_min, y_max, h, dtype=dtype, device=device) | |
w_pos = centers(x_min, x_max, w, dtype=dtype, device=device) | |
return make_grid(h_pos, w_pos) | |
def freqs_pixel(max_freq=10.0): | |
def init(shape): | |
freqs = torch.linspace(1.0, max_freq / 2, shape[-1]) * math.pi | |
return freqs.log().expand(shape) | |
return init | |
def freqs_pixel_log(max_freq=10.0): | |
def init(shape): | |
log_min = math.log(math.pi) | |
log_max = math.log(max_freq * math.pi / 2) | |
return torch.linspace(log_min, log_max, shape[-1]).expand(shape) | |
return init | |
class AxialRoPE(nn.Module): | |
def __init__(self, dim, n_heads, start_index=0, freqs_init=freqs_pixel_log(max_freq=10.0)): | |
super().__init__() | |
self.n_heads = n_heads | |
self.start_index = start_index | |
log_freqs = freqs_init((n_heads, dim // 4)) | |
self.freqs_h = nn.Parameter(log_freqs.clone()) | |
self.freqs_w = nn.Parameter(log_freqs.clone()) | |
def extra_repr(self): | |
dim = (self.freqs_h.shape[-1] + self.freqs_w.shape[-1]) * 2 | |
return f"dim={dim}, n_heads={self.n_heads}, start_index={self.start_index}" | |
def get_freqs(self, pos): | |
if pos.shape[-1] != 2: | |
raise ValueError("input shape must be (..., 2)") | |
freqs_h = pos[..., None, None, 0] * self.freqs_h.exp() | |
freqs_w = pos[..., None, None, 1] * self.freqs_w.exp() | |
freqs = torch.cat((freqs_h, freqs_w), dim=-1).repeat_interleave(2, dim=-1) | |
return freqs.transpose(-2, -3) | |
def forward(self, x, pos): | |
freqs = self.get_freqs(pos) | |
return apply_rotary_emb(freqs, x, self.start_index) |