PMRF / app.py
ohayonguy
trying to fix interface
94bce76
raw
history blame
10.5 kB
import os
if os.getenv('SPACES_ZERO_GPU') == "true":
os.environ['SPACES_ZERO_GPU'] = "1"
os.environ['K_DIFFUSION_USE_COMPILE'] = "0"
import spaces
import cv2
from tqdm import tqdm
import gradio as gr
import random
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from basicsr.utils import img2tensor, tensor2img
from gradio_imageslider import ImageSlider
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from realesrgan.utils import RealESRGANer
from lightning_models.mmse_rectified_flow import MMSERectifiedFlow
torch.set_grad_enabled(False)
MAX_SEED = 1000000
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs('pretrained_models', exist_ok=True)
realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth'
if not os.path.exists(realesr_model_path):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth")
# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=400, tile_pad=10, pre_pad=0,
half=half)
pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device=device)
face_helper_dummy = FaceRestoreHelper(
1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,
device=device,
model_rootpath=None)
def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device):
source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0)
dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps)
x_t_next = source_dist_samples.clone()
t_one = torch.ones(x.shape[0], device=device)
for i in tqdm(range(num_flow_steps)):
num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps
v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype)
x_t_next = x_t_next.clone() + v_t_next * dt
return x_t_next.clip(0, 1).to(torch.float32)
@torch.inference_mode()
@spaces.GPU()
def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2):
face_helper.clean_all()
if has_aligned: # the inputs are already aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
face_helper.cropped_faces = [img]
else:
face_helper.read_image(img)
face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
# align and warp each face
face_helper.align_warp_face()
if len(face_helper.cropped_faces) == 0:
raise gr.Error("Could not identify any face in the image.")
if len(face_helper.cropped_faces) > 1:
gr.Info(f"Identified {len(face_helper.cropped_faces)} faces in the image. The algorithm will enhance the quality of each face.")
else:
gr.Info(f"Identified one face in the image.")
# face restoration
for i, cropped_face in tqdm(enumerate(face_helper.cropped_faces)):
# prepare data
h, w = cropped_face.shape[0], cropped_face.shape[1]
cropped_face = cv2.resize(cropped_face, (512, 512), interpolation=cv2.INTER_LINEAR)
# face_helper.cropped_faces[i] = cropped_face
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
dummy_x = torch.zeros_like(cropped_face_t)
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device)
restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1))
restored_face = cv2.resize(restored_face, (h, w), interpolation=cv2.INTER_LINEAR)
restored_face = restored_face.astype('uint8')
face_helper.add_restored_face(restored_face)
if not has_aligned and paste_back:
# upsample the background
if upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = upsampler.enhance(img, outscale=scale)[0]
else:
bg_img = None
face_helper.get_inverse_affine(None)
# paste each restored face to the input image
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img)
return face_helper.cropped_faces, face_helper.restored_faces, restored_img
else:
return face_helper.cropped_faces, face_helper.restored_faces, None
@torch.inference_mode()
@spaces.GPU()
def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps,
progress=gr.Progress(track_tqdm=True)):
if img is None:
raise gr.Error("Please upload an image before submitting.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
torch.manual_seed(seed)
if scale > 4:
scale = 4 # avoid too large scale value
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 2: # for gray inputs
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
h, w = img.shape[0:2]
if h > 4500 or w > 4500:
raise gr.Error('Image size too large.')
face_helper = FaceRestoreHelper(
scale,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,
device=device,
model_rootpath=None)
has_aligned = True if aligned == 'Yes' else False
cropped_face, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False,
paste_back=True, num_flow_steps=num_flow_steps,
scale=scale)
if has_aligned:
output = restored_aligned[0]
# input = cropped_face[0].astype('uint8')
else:
output = restored_img
# input = img
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
# h, w = output.shape[0:2]
# input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
# input = cv2.resize(input, (h, w), interpolation=cv2.INTER_LINEAR)
return output
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</h1>
<h3 style="margin-bottom: 10px; text-align: center;">
<a href="https://arxiv.org/abs/2410.00418">[Paper]</a>&nbsp;|&nbsp;
<a href="https://pmrf-ml.github.io/">[Project Page]</a>&nbsp;|&nbsp;
<a href="https://github.com/ohayonguy/PMRF">[Code]</a>
</h3>
"""
markdown_top = """
Gradio demo for the blind face image restoration version of [Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration](https://arxiv.org/abs/2410.00418).
You may use this demo to enhance the quality of any image which contains faces.
Please refer to our project's page for more details: https://pmrf-ml.github.io/.
*Notes* :
1. Our model is designed to restore aligned face images, where there is *only one* face in the image, and the face is centered. Here, however, we incorporate mechanisms that allow restoring the quality of *any* image that contains *any* number of faces. Thus, the resulting quality of such general images is not guaranteed.
2. Images that are too large won't work due to memory constraints.
---
"""
article = r"""
If you find our work useful, please help to ⭐ our <a href='https://github.com/ohayonguy/PMRF' target='_blank'>GitHub repository</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/ohayonguy/PMRF?style=social)](https://github.com/ohayonguy/PMRF)
πŸ“ **Citation**
```bibtex
@article{ohayon2024pmrf,
author = {Guy Ohayon and Tomer Michaeli and Michael Elad},
title = {Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration},
journal = {arXiv preprint arXiv:2410.00418},
year = {2024},
url = {https://arxiv.org/abs/2410.00418}
}
```
πŸ“‹ **License**
This project is released under the <a rel="license" href="https://github.com/ohayonguy/PMRF/blob/master/LICENSE">MIT license</a>.
πŸ“§ **Contact**
If you have any questions, please feel free to contact me at <b>guyoep@gmail.com</b>.
"""
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.HTML(intro)
gr.Markdown(markdown_top)
with gr.Row():
with gr.Column(scale=2):
input_im = gr.Image(label="Input", type="filepath", show_label=True)
with gr.Column(scale=1):
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
minimum=1,
maximum=200,
step=1,
value=25,
)
upscale_factor = gr.Slider(
label="Scale factor for the background upsampler. Applicable only to non-aligned face images.",
minimum=1,
maximum=4,
step=0.1,
value=1,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
aligned = gr.Checkbox(label="The input is an aligned face image", value=False)
with gr.Row():
run_button = gr.Button(value="Submit", variant="primary")
with gr.Row():
result = gr.Image(label="Output", type="numpy", show_label=True)
gr.Markdown(article)
gr.on(
[run_button.click],
fn=inference,
inputs=[
seed,
randomize_seed,
input_im,
aligned,
upscale_factor,
num_inference_steps,
],
outputs=result,
show_api=False,
# show_progress="minimal",
)
demo.queue()
demo.launch(state_session_capacity=15)