Spaces:
Running
on
Zero
Running
on
Zero
import os | |
if os.getenv('SPACES_ZERO_GPU') == "true": | |
os.environ['SPACES_ZERO_GPU'] = "1" | |
os.environ['K_DIFFUSION_USE_COMPILE'] = "0" | |
import spaces | |
import cv2 | |
from tqdm import tqdm | |
import gradio as gr | |
import random | |
import torch | |
from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
from basicsr.utils import img2tensor, tensor2img | |
from gradio_imageslider import ImageSlider | |
from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
from realesrgan.utils import RealESRGANer | |
from lightning_models.mmse_rectified_flow import MMSERectifiedFlow | |
torch.set_grad_enabled(False) | |
MAX_SEED = 1000000 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
os.makedirs('pretrained_models', exist_ok=True) | |
realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth' | |
if not os.path.exists(realesr_model_path): | |
os.system( | |
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth") | |
# background enhancer with RealESRGAN | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
half = True if torch.cuda.is_available() else False | |
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=400, tile_pad=10, pre_pad=0, | |
half=half) | |
pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device=device) | |
face_helper_dummy = FaceRestoreHelper( | |
1, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', | |
save_ext='png', | |
use_parse=True, | |
device=device, | |
model_rootpath=None) | |
def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device): | |
source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0) | |
dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) | |
x_t_next = source_dist_samples.clone() | |
t_one = torch.ones(x.shape[0], device=device) | |
for i in tqdm(range(num_flow_steps)): | |
num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps | |
v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype) | |
x_t_next = x_t_next.clone() + v_t_next * dt | |
return x_t_next.clip(0, 1).to(torch.float32) | |
def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2): | |
face_helper.clean_all() | |
if has_aligned: # the inputs are already aligned | |
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) | |
face_helper.cropped_faces = [img] | |
else: | |
face_helper.read_image(img) | |
face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5) | |
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels | |
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations. | |
# align and warp each face | |
face_helper.align_warp_face() | |
if len(face_helper.cropped_faces) == 0: | |
raise gr.Error("Could not identify any face in the image.") | |
if len(face_helper.cropped_faces) > 1: | |
gr.Info(f"Identified {len(face_helper.cropped_faces)} faces in the image. The algorithm will enhance the quality of each face.") | |
else: | |
gr.Info(f"Identified one face in the image.") | |
# face restoration | |
for i, cropped_face in tqdm(enumerate(face_helper.cropped_faces)): | |
# prepare data | |
h, w = cropped_face.shape[0], cropped_face.shape[1] | |
cropped_face = cv2.resize(cropped_face, (512, 512), interpolation=cv2.INTER_LINEAR) | |
# face_helper.cropped_faces[i] = cropped_face | |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) | |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device) | |
dummy_x = torch.zeros_like(cropped_face_t) | |
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device) | |
restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1)) | |
restored_face = cv2.resize(restored_face, (h, w), interpolation=cv2.INTER_LINEAR) | |
restored_face = restored_face.astype('uint8') | |
face_helper.add_restored_face(restored_face) | |
if not has_aligned and paste_back: | |
# upsample the background | |
if upsampler is not None: | |
# Now only support RealESRGAN for upsampling background | |
bg_img = upsampler.enhance(img, outscale=scale)[0] | |
else: | |
bg_img = None | |
face_helper.get_inverse_affine(None) | |
# paste each restored face to the input image | |
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img) | |
return face_helper.cropped_faces, face_helper.restored_faces, restored_img | |
else: | |
return face_helper.cropped_faces, face_helper.restored_faces, None | |
def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps, | |
progress=gr.Progress(track_tqdm=True)): | |
if img is None: | |
raise gr.Error("Please upload an image before submitting.") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
torch.manual_seed(seed) | |
if scale > 4: | |
scale = 4 # avoid too large scale value | |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 2: # for gray inputs | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
h, w = img.shape[0:2] | |
if h > 4500 or w > 4500: | |
raise gr.Error('Image size too large.') | |
face_helper = FaceRestoreHelper( | |
scale, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', | |
save_ext='png', | |
use_parse=True, | |
device=device, | |
model_rootpath=None) | |
has_aligned = True if aligned == 'Yes' else False | |
cropped_face, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False, | |
paste_back=True, num_flow_steps=num_flow_steps, | |
scale=scale) | |
if has_aligned: | |
output = restored_aligned[0] | |
# input = cropped_face[0].astype('uint8') | |
else: | |
output = restored_img | |
# input = img | |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) | |
# h, w = output.shape[0:2] | |
# input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB) | |
# input = cv2.resize(input, (h, w), interpolation=cv2.INTER_LINEAR) | |
return output | |
intro = """ | |
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</h1> | |
<h3 style="margin-bottom: 10px; text-align: center;"> | |
<a href="https://arxiv.org/abs/2410.00418">[Paper]</a> | | |
<a href="https://pmrf-ml.github.io/">[Project Page]</a> | | |
<a href="https://github.com/ohayonguy/PMRF">[Code]</a> | |
</h3> | |
""" | |
markdown_top = """ | |
Gradio demo for the blind face image restoration version of [Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration](https://arxiv.org/abs/2410.00418). | |
You may use this demo to enhance the quality of any image which contains faces. | |
Please refer to our project's page for more details: https://pmrf-ml.github.io/. | |
*Notes* : | |
1. Our model is designed to restore aligned face images, where there is *only one* face in the image, and the face is centered. Here, however, we incorporate mechanisms that allow restoring the quality of *any* image that contains *any* number of faces. Thus, the resulting quality of such general images is not guaranteed. | |
2. Images that are too large won't work due to memory constraints. | |
--- | |
""" | |
article = r""" | |
If you find our work useful, please help to β our <a href='https://github.com/ohayonguy/PMRF' target='_blank'>GitHub repository</a>. Thanks! | |
[![GitHub Stars](https://img.shields.io/github/stars/ohayonguy/PMRF?style=social)](https://github.com/ohayonguy/PMRF) | |
π **Citation** | |
```bibtex | |
@article{ohayon2024pmrf, | |
author = {Guy Ohayon and Tomer Michaeli and Michael Elad}, | |
title = {Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration}, | |
journal = {arXiv preprint arXiv:2410.00418}, | |
year = {2024}, | |
url = {https://arxiv.org/abs/2410.00418} | |
} | |
``` | |
π **License** | |
This project is released under the <a rel="license" href="https://github.com/ohayonguy/PMRF/blob/master/LICENSE">MIT license</a>. | |
π§ **Contact** | |
If you have any questions, please feel free to contact me at <b>guyoep@gmail.com</b>. | |
""" | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 512px; | |
} | |
""" | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
gr.HTML(intro) | |
gr.Markdown(markdown_top) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
input_im = gr.Image(label="Input", type="filepath", show_label=True) | |
with gr.Column(scale=1): | |
num_inference_steps = gr.Slider( | |
label="Number of Inference Steps", | |
minimum=1, | |
maximum=200, | |
step=1, | |
value=25, | |
) | |
upscale_factor = gr.Slider( | |
label="Scale factor for the background upsampler. Applicable only to non-aligned face images.", | |
minimum=1, | |
maximum=4, | |
step=0.1, | |
value=1, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
aligned = gr.Checkbox(label="The input is an aligned face image", value=False) | |
with gr.Row(): | |
run_button = gr.Button(value="Submit", variant="primary") | |
with gr.Row(): | |
result = gr.Image(label="Output", type="numpy", show_label=True) | |
gr.Markdown(article) | |
gr.on( | |
[run_button.click], | |
fn=inference, | |
inputs=[ | |
seed, | |
randomize_seed, | |
input_im, | |
aligned, | |
upscale_factor, | |
num_inference_steps, | |
], | |
outputs=result, | |
show_api=False, | |
# show_progress="minimal", | |
) | |
demo.queue() | |
demo.launch(state_session_capacity=15) | |