oguzakif's picture
init repo
d4b77ac
from models.siamrpn import SiamRPN
from models.features import MultiStageFeature
from models.rpn import RPN, DepthCorr
import torch.nn as nn
from utils.load_helper import load_pretrain
from resnet import resnet50
class ResDownS(nn.Module):
def __init__(self, inplane, outplane):
super(ResDownS, self).__init__()
self.downsample = nn.Sequential(
nn.Conv2d(inplane, outplane, kernel_size=1, bias=False),
nn.BatchNorm2d(outplane))
def forward(self, x):
x = self.downsample(x)
if x.size(3) < 20:
l = 4
r = -4
x = x[:, :, l:r, l:r]
return x
class ResDown(MultiStageFeature):
def __init__(self, pretrain=False):
super(ResDown, self).__init__()
self.features = resnet50(layer3=True, layer4=False)
if pretrain:
load_pretrain(self.features, 'resnet.model')
self.downsample = ResDownS(1024, 256)
self.layers = [self.downsample, self.features.layer2, self.features.layer3]
self.train_nums = [1, 3]
self.change_point = [0, 0.5]
self.unfix(0.0)
def param_groups(self, start_lr, feature_mult=1):
lr = start_lr * feature_mult
def _params(module, mult=1):
params = list(filter(lambda x:x.requires_grad, module.parameters()))
if len(params):
return [{'params': params, 'lr': lr * mult}]
else:
return []
groups = []
groups += _params(self.downsample)
groups += _params(self.features, 0.1)
return groups
def forward(self, x):
output = self.features(x)
p2, p3, p4 = output
p3 = self.downsample(p3)
return p3
class UP(RPN):
def __init__(self, anchor_num=5, feature_in=256, feature_out=256):
super(UP, self).__init__()
self.anchor_num = anchor_num
self.feature_in = feature_in
self.feature_out = feature_out
self.cls_output = 2 * self.anchor_num
self.loc_output = 4 * self.anchor_num
self.cls = DepthCorr(feature_in, feature_out, self.cls_output)
self.loc = DepthCorr(feature_in, feature_out, self.loc_output)
def forward(self, z_f, x_f):
cls = self.cls(z_f, x_f)
loc = self.loc(z_f, x_f)
return cls, loc
class Custom(SiamRPN):
def __init__(self, pretrain=False, **kwargs):
super(Custom, self).__init__(**kwargs)
self.features = ResDown(pretrain=pretrain)
self.rpn_model = UP(anchor_num=self.anchor_num, feature_in=256, feature_out=256)
def template(self, template):
self.zf = self.features(template)
def track(self, search):
search = self.features(search)
rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, search)
return rpn_pred_cls, rpn_pred_loc