oguzakif's picture
init repo
d4b77ac
raw history blame
No virus
25.9 kB
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
from __future__ import division
import argparse
import logging
import numpy as np
import cv2
from PIL import Image
from os import makedirs
from os.path import join, isdir, isfile
from utils.log_helper import init_log, add_file_handler
from utils.load_helper import load_pretrain
from utils.bbox_helper import get_axis_aligned_bbox, cxy_wh_2_rect
from utils.benchmark_helper import load_dataset, dataset_zoo
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from utils.anchors import Anchors
from utils.tracker_config import TrackerConfig
from utils.config_helper import load_config
from utils.pyvotkit.region import vot_overlap, vot_float2str
thrs = np.arange(0.3, 0.5, 0.05)
parser = argparse.ArgumentParser(description='Test SiamMask')
parser.add_argument('--arch', dest='arch', default='', choices=['Custom',],
help='architecture of pretrained model')
parser.add_argument('--config', dest='config', required=True, help='hyper-parameter for SiamMask')
parser.add_argument('--resume', default='', type=str, required=True,
metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--mask', action='store_true', help='whether use mask output')
parser.add_argument('--refine', action='store_true', help='whether use mask refine output')
parser.add_argument('--dataset', dest='dataset', default='VOT2018', choices=dataset_zoo,
help='datasets')
parser.add_argument('-l', '--log', default="log_test.txt", type=str, help='log file')
parser.add_argument('-v', '--visualization', dest='visualization', action='store_true',
help='whether visualize result')
parser.add_argument('--save_mask', action='store_true', help='whether use save mask for davis')
parser.add_argument('--gt', action='store_true', help='whether use gt rect for davis (Oracle)')
parser.add_argument('--video', default='', type=str, help='test special video')
parser.add_argument('--cpu', action='store_true', help='cpu mode')
parser.add_argument('--debug', action='store_true', help='debug mode')
def to_torch(ndarray):
if type(ndarray).__module__ == 'numpy':
return torch.from_numpy(ndarray)
elif not torch.is_tensor(ndarray):
raise ValueError("Cannot convert {} to torch tensor"
.format(type(ndarray)))
return ndarray
def im_to_torch(img):
img = np.transpose(img, (2, 0, 1)) # C*H*W
img = to_torch(img).float()
return img
def get_subwindow_tracking(im, pos, model_sz, original_sz, avg_chans, out_mode='torch'):
if isinstance(pos, float):
pos = [pos, pos]
sz = original_sz
im_sz = im.shape
c = (original_sz + 1) / 2
context_xmin = round(pos[0] - c)
context_xmax = context_xmin + sz - 1
context_ymin = round(pos[1] - c)
context_ymax = context_ymin + sz - 1
left_pad = int(max(0., -context_xmin))
top_pad = int(max(0., -context_ymin))
right_pad = int(max(0., context_xmax - im_sz[1] + 1))
bottom_pad = int(max(0., context_ymax - im_sz[0] + 1))
context_xmin = context_xmin + left_pad
context_xmax = context_xmax + left_pad
context_ymin = context_ymin + top_pad
context_ymax = context_ymax + top_pad
# zzp: a more easy speed version
r, c, k = im.shape
if any([top_pad, bottom_pad, left_pad, right_pad]):
te_im = np.zeros((r + top_pad + bottom_pad, c + left_pad + right_pad, k), np.uint8)
te_im[top_pad:top_pad + r, left_pad:left_pad + c, :] = im
if top_pad:
te_im[0:top_pad, left_pad:left_pad + c, :] = avg_chans
if bottom_pad:
te_im[r + top_pad:, left_pad:left_pad + c, :] = avg_chans
if left_pad:
te_im[:, 0:left_pad, :] = avg_chans
if right_pad:
te_im[:, c + left_pad:, :] = avg_chans
im_patch_original = te_im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :]
else:
im_patch_original = im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :]
if not np.array_equal(model_sz, original_sz):
im_patch = cv2.resize(im_patch_original, (model_sz, model_sz))
else:
im_patch = im_patch_original
# cv2.imshow('crop', im_patch)
# cv2.waitKey(0)
return im_to_torch(im_patch) if out_mode in 'torch' else im_patch
def generate_anchor(cfg, score_size):
anchors = Anchors(cfg)
anchor = anchors.anchors
x1, y1, x2, y2 = anchor[:, 0], anchor[:, 1], anchor[:, 2], anchor[:, 3]
anchor = np.stack([(x1+x2)*0.5, (y1+y2)*0.5, x2-x1, y2-y1], 1)
total_stride = anchors.stride
anchor_num = anchor.shape[0]
anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4))
ori = - (score_size // 2) * total_stride
xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)],
[ori + total_stride * dy for dy in range(score_size)])
xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \
np.tile(yy.flatten(), (anchor_num, 1)).flatten()
anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32)
return anchor
def siamese_init(im, target_pos, target_sz, model, hp=None, device='cpu'):
state = dict()
state['im_h'] = im.shape[0]
state['im_w'] = im.shape[1]
p = TrackerConfig()
p.update(hp, model.anchors)
p.renew()
net = model
p.scales = model.anchors['scales']
p.ratios = model.anchors['ratios']
p.anchor_num = model.anchor_num
p.anchor = generate_anchor(model.anchors, p.score_size)
avg_chans = np.mean(im, axis=(0, 1))
wc_z = target_sz[0] + p.context_amount * sum(target_sz)
hc_z = target_sz[1] + p.context_amount * sum(target_sz)
s_z = round(np.sqrt(wc_z * hc_z))
# initialize the exemplar
z_crop = get_subwindow_tracking(im, target_pos, p.exemplar_size, s_z, avg_chans)
z = Variable(z_crop.unsqueeze(0))
net.template(z.to(device))
if p.windowing == 'cosine':
window = np.outer(np.hanning(p.score_size), np.hanning(p.score_size))
elif p.windowing == 'uniform':
window = np.ones((p.score_size, p.score_size))
window = np.tile(window.flatten(), p.anchor_num)
state['p'] = p
state['net'] = net
state['avg_chans'] = avg_chans
state['window'] = window
state['target_pos'] = target_pos
state['target_sz'] = target_sz
return state
def siamese_track(state, im, mask_enable=False, refine_enable=False, device='cpu', debug=False):
p = state['p']
net = state['net']
avg_chans = state['avg_chans']
window = state['window']
target_pos = state['target_pos']
target_sz = state['target_sz']
wc_x = target_sz[1] + p.context_amount * sum(target_sz)
hc_x = target_sz[0] + p.context_amount * sum(target_sz)
s_x = np.sqrt(wc_x * hc_x)
scale_x = p.exemplar_size / s_x
d_search = (p.instance_size - p.exemplar_size) / 2
pad = d_search / scale_x
s_x = s_x + 2 * pad
crop_box = [target_pos[0] - round(s_x) / 2, target_pos[1] - round(s_x) / 2, round(s_x), round(s_x)]
if debug:
im_debug = im.copy()
crop_box_int = np.int0(crop_box)
cv2.rectangle(im_debug, (crop_box_int[0], crop_box_int[1]),
(crop_box_int[0] + crop_box_int[2], crop_box_int[1] + crop_box_int[3]), (255, 0, 0), 2)
cv2.imshow('search area', im_debug)
cv2.waitKey(0)
# extract scaled crops for search region x at previous target position
x_crop = Variable(get_subwindow_tracking(im, target_pos, p.instance_size, round(s_x), avg_chans).unsqueeze(0))
if mask_enable:
score, delta, mask = net.track_mask(x_crop.to(device))
else:
score, delta = net.track(x_crop.to(device))
delta = delta.permute(1, 2, 3, 0).contiguous().view(4, -1).data.cpu().numpy()
score = F.softmax(score.permute(1, 2, 3, 0).contiguous().view(2, -1).permute(1, 0), dim=1).data[:,
1].cpu().numpy()
delta[0, :] = delta[0, :] * p.anchor[:, 2] + p.anchor[:, 0]
delta[1, :] = delta[1, :] * p.anchor[:, 3] + p.anchor[:, 1]
delta[2, :] = np.exp(delta[2, :]) * p.anchor[:, 2]
delta[3, :] = np.exp(delta[3, :]) * p.anchor[:, 3]
def change(r):
return np.maximum(r, 1. / r)
def sz(w, h):
pad = (w + h) * 0.5
sz2 = (w + pad) * (h + pad)
return np.sqrt(sz2)
def sz_wh(wh):
pad = (wh[0] + wh[1]) * 0.5
sz2 = (wh[0] + pad) * (wh[1] + pad)
return np.sqrt(sz2)
# size penalty
target_sz_in_crop = target_sz*scale_x
s_c = change(sz(delta[2, :], delta[3, :]) / (sz_wh(target_sz_in_crop))) # scale penalty
r_c = change((target_sz_in_crop[0] / target_sz_in_crop[1]) / (delta[2, :] / delta[3, :])) # ratio penalty
penalty = np.exp(-(r_c * s_c - 1) * p.penalty_k)
pscore = penalty * score
# cos window (motion model)
pscore = pscore * (1 - p.window_influence) + window * p.window_influence
best_pscore_id = np.argmax(pscore)
pred_in_crop = delta[:, best_pscore_id] / scale_x
lr = penalty[best_pscore_id] * score[best_pscore_id] * p.lr # lr for OTB
res_x = pred_in_crop[0] + target_pos[0]
res_y = pred_in_crop[1] + target_pos[1]
res_w = target_sz[0] * (1 - lr) + pred_in_crop[2] * lr
res_h = target_sz[1] * (1 - lr) + pred_in_crop[3] * lr
target_pos = np.array([res_x, res_y])
target_sz = np.array([res_w, res_h])
# for Mask Branch
if mask_enable:
best_pscore_id_mask = np.unravel_index(best_pscore_id, (5, p.score_size, p.score_size))
delta_x, delta_y = best_pscore_id_mask[2], best_pscore_id_mask[1]
if refine_enable:
mask = net.track_refine((delta_y, delta_x)).to(device).sigmoid().squeeze().view(
p.out_size, p.out_size).cpu().data.numpy()
else:
mask = mask[0, :, delta_y, delta_x].sigmoid(). \
squeeze().view(p.out_size, p.out_size).cpu().data.numpy()
def crop_back(image, bbox, out_sz, padding=-1):
a = (out_sz[0] - 1) / bbox[2]
b = (out_sz[1] - 1) / bbox[3]
c = -a * bbox[0]
d = -b * bbox[1]
mapping = np.array([[a, 0, c],
[0, b, d]]).astype(np.float)
crop = cv2.warpAffine(image, mapping, (out_sz[0], out_sz[1]),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=padding)
return crop
s = crop_box[2] / p.instance_size
sub_box = [crop_box[0] + (delta_x - p.base_size / 2) * p.total_stride * s,
crop_box[1] + (delta_y - p.base_size / 2) * p.total_stride * s,
s * p.exemplar_size, s * p.exemplar_size]
s = p.out_size / sub_box[2]
back_box = [-sub_box[0] * s, -sub_box[1] * s, state['im_w'] * s, state['im_h'] * s]
mask_in_img = crop_back(mask, back_box, (state['im_w'], state['im_h']))
target_mask = (mask_in_img > p.seg_thr).astype(np.uint8)
if cv2.__version__[-5] == '4':
contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
else:
_, contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnt_area = [cv2.contourArea(cnt) for cnt in contours]
if len(contours) != 0 and np.max(cnt_area) > 100:
contour = contours[np.argmax(cnt_area)] # use max area polygon
polygon = contour.reshape(-1, 2)
# pbox = cv2.boundingRect(polygon) # Min Max Rectangle
prbox = cv2.boxPoints(cv2.minAreaRect(polygon)) # Rotated Rectangle
# box_in_img = pbox
rbox_in_img = prbox
else: # empty mask
location = cxy_wh_2_rect(target_pos, target_sz)
rbox_in_img = np.array([[location[0], location[1]],
[location[0] + location[2], location[1]],
[location[0] + location[2], location[1] + location[3]],
[location[0], location[1] + location[3]]])
target_pos[0] = max(0, min(state['im_w'], target_pos[0]))
target_pos[1] = max(0, min(state['im_h'], target_pos[1]))
target_sz[0] = max(10, min(state['im_w'], target_sz[0]))
target_sz[1] = max(10, min(state['im_h'], target_sz[1]))
state['target_pos'] = target_pos
state['target_sz'] = target_sz
state['score'] = score[best_pscore_id]
state['mask'] = mask_in_img if mask_enable else []
state['ploygon'] = rbox_in_img if mask_enable else []
return state
def track_vot(model, video, hp=None, mask_enable=False, refine_enable=False, device='cpu'):
regions = [] # result and states[1 init / 2 lost / 0 skip]
image_files, gt = video['image_files'], video['gt']
start_frame, end_frame, lost_times, toc = 0, len(image_files), 0, 0
for f, image_file in enumerate(image_files):
im = cv2.imread(image_file)
tic = cv2.getTickCount()
if f == start_frame: # init
cx, cy, w, h = get_axis_aligned_bbox(gt[f])
target_pos = np.array([cx, cy])
target_sz = np.array([w, h])
state = siamese_init(im, target_pos, target_sz, model, hp, device) # init tracker
location = cxy_wh_2_rect(state['target_pos'], state['target_sz'])
regions.append(1 if 'VOT' in args.dataset else gt[f])
elif f > start_frame: # tracking
state = siamese_track(state, im, mask_enable, refine_enable, device, args.debug) # track
if mask_enable:
location = state['ploygon'].flatten()
mask = state['mask']
else:
location = cxy_wh_2_rect(state['target_pos'], state['target_sz'])
mask = []
if 'VOT' in args.dataset:
gt_polygon = ((gt[f][0], gt[f][1]), (gt[f][2], gt[f][3]),
(gt[f][4], gt[f][5]), (gt[f][6], gt[f][7]))
if mask_enable:
pred_polygon = ((location[0], location[1]), (location[2], location[3]),
(location[4], location[5]), (location[6], location[7]))
else:
pred_polygon = ((location[0], location[1]),
(location[0] + location[2], location[1]),
(location[0] + location[2], location[1] + location[3]),
(location[0], location[1] + location[3]))
b_overlap = vot_overlap(gt_polygon, pred_polygon, (im.shape[1], im.shape[0]))
else:
b_overlap = 1
if b_overlap:
regions.append(location)
else: # lost
regions.append(2)
lost_times += 1
start_frame = f + 5 # skip 5 frames
else: # skip
regions.append(0)
toc += cv2.getTickCount() - tic
if args.visualization and f >= start_frame: # visualization (skip lost frame)
im_show = im.copy()
if f == 0: cv2.destroyAllWindows()
if gt.shape[0] > f:
if len(gt[f]) == 8:
cv2.polylines(im_show, [np.array(gt[f], np.int).reshape((-1, 1, 2))], True, (0, 255, 0), 3)
else:
cv2.rectangle(im_show, (gt[f, 0], gt[f, 1]), (gt[f, 0] + gt[f, 2], gt[f, 1] + gt[f, 3]), (0, 255, 0), 3)
if len(location) == 8:
if mask_enable:
mask = mask > state['p'].seg_thr
im_show[:, :, 2] = mask * 255 + (1 - mask) * im_show[:, :, 2]
location_int = np.int0(location)
cv2.polylines(im_show, [location_int.reshape((-1, 1, 2))], True, (0, 255, 255), 3)
else:
location = [int(l) for l in location]
cv2.rectangle(im_show, (location[0], location[1]),
(location[0] + location[2], location[1] + location[3]), (0, 255, 255), 3)
cv2.putText(im_show, str(f), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
cv2.putText(im_show, str(lost_times), (40, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.putText(im_show, str(state['score']) if 'score' in state else '', (40, 120), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imshow(video['name'], im_show)
cv2.waitKey(1)
toc /= cv2.getTickFrequency()
# save result
name = args.arch.split('.')[0] + '_' + ('mask_' if mask_enable else '') + ('refine_' if refine_enable else '') +\
args.resume.split('/')[-1].split('.')[0]
if 'VOT' in args.dataset:
video_path = join('test', args.dataset, name,
'baseline', video['name'])
if not isdir(video_path): makedirs(video_path)
result_path = join(video_path, '{:s}_001.txt'.format(video['name']))
with open(result_path, "w") as fin:
for x in regions:
fin.write("{:d}\n".format(x)) if isinstance(x, int) else \
fin.write(','.join([vot_float2str("%.4f", i) for i in x]) + '\n')
else: # OTB
video_path = join('test', args.dataset, name)
if not isdir(video_path): makedirs(video_path)
result_path = join(video_path, '{:s}.txt'.format(video['name']))
with open(result_path, "w") as fin:
for x in regions:
fin.write(','.join([str(i) for i in x])+'\n')
logger.info('({:d}) Video: {:12s} Time: {:02.1f}s Speed: {:3.1f}fps Lost: {:d}'.format(
v_id, video['name'], toc, f / toc, lost_times))
return lost_times, f / toc
def MultiBatchIouMeter(thrs, outputs, targets, start=None, end=None):
targets = np.array(targets)
outputs = np.array(outputs)
num_frame = targets.shape[0]
if start is None:
object_ids = np.array(list(range(outputs.shape[0]))) + 1
else:
object_ids = [int(id) for id in start]
num_object = len(object_ids)
res = np.zeros((num_object, len(thrs)), dtype=np.float32)
output_max_id = np.argmax(outputs, axis=0).astype('uint8')+1
outputs_max = np.max(outputs, axis=0)
for k, thr in enumerate(thrs):
output_thr = outputs_max > thr
for j in range(num_object):
target_j = targets == object_ids[j]
if start is None:
start_frame, end_frame = 1, num_frame - 1
else:
start_frame, end_frame = start[str(object_ids[j])] + 1, end[str(object_ids[j])] - 1
iou = []
for i in range(start_frame, end_frame):
pred = (output_thr[i] * output_max_id[i]) == (j+1)
mask_sum = (pred == 1).astype(np.uint8) + (target_j[i] > 0).astype(np.uint8)
intxn = np.sum(mask_sum == 2)
union = np.sum(mask_sum > 0)
if union > 0:
iou.append(intxn / union)
elif union == 0 and intxn == 0:
iou.append(1)
res[j, k] = np.mean(iou)
return res
def track_vos(model, video, hp=None, mask_enable=False, refine_enable=False, mot_enable=False, device='cpu'):
image_files = video['image_files']
annos = [np.array(Image.open(x)) for x in video['anno_files']]
if 'anno_init_files' in video:
annos_init = [np.array(Image.open(x)) for x in video['anno_init_files']]
else:
annos_init = [annos[0]]
if not mot_enable:
annos = [(anno > 0).astype(np.uint8) for anno in annos]
annos_init = [(anno_init > 0).astype(np.uint8) for anno_init in annos_init]
if 'start_frame' in video:
object_ids = [int(id) for id in video['start_frame']]
else:
object_ids = [o_id for o_id in np.unique(annos[0]) if o_id != 0]
if len(object_ids) != len(annos_init):
annos_init = annos_init*len(object_ids)
object_num = len(object_ids)
toc = 0
pred_masks = np.zeros((object_num, len(image_files), annos[0].shape[0], annos[0].shape[1]))-1
for obj_id, o_id in enumerate(object_ids):
if 'start_frame' in video:
start_frame = video['start_frame'][str(o_id)]
end_frame = video['end_frame'][str(o_id)]
else:
start_frame, end_frame = 0, len(image_files)
for f, image_file in enumerate(image_files):
im = cv2.imread(image_file)
tic = cv2.getTickCount()
if f == start_frame: # init
mask = annos_init[obj_id] == o_id
x, y, w, h = cv2.boundingRect((mask).astype(np.uint8))
cx, cy = x + w/2, y + h/2
target_pos = np.array([cx, cy])
target_sz = np.array([w, h])
state = siamese_init(im, target_pos, target_sz, model, hp, device=device) # init tracker
elif end_frame >= f > start_frame: # tracking
state = siamese_track(state, im, mask_enable, refine_enable, device=device) # track
mask = state['mask']
toc += cv2.getTickCount() - tic
if end_frame >= f >= start_frame:
pred_masks[obj_id, f, :, :] = mask
toc /= cv2.getTickFrequency()
if len(annos) == len(image_files):
multi_mean_iou = MultiBatchIouMeter(thrs, pred_masks, annos,
start=video['start_frame'] if 'start_frame' in video else None,
end=video['end_frame'] if 'end_frame' in video else None)
for i in range(object_num):
for j, thr in enumerate(thrs):
logger.info('Fusion Multi Object{:20s} IOU at {:.2f}: {:.4f}'.format(video['name'] + '_' + str(i + 1), thr,
multi_mean_iou[i, j]))
else:
multi_mean_iou = []
if args.save_mask:
video_path = join('test', args.dataset, 'SiamMask', video['name'])
if not isdir(video_path): makedirs(video_path)
pred_mask_final = np.array(pred_masks)
pred_mask_final = (np.argmax(pred_mask_final, axis=0).astype('uint8') + 1) * (
np.max(pred_mask_final, axis=0) > state['p'].seg_thr).astype('uint8')
for i in range(pred_mask_final.shape[0]):
cv2.imwrite(join(video_path, image_files[i].split('/')[-1].split('.')[0] + '.png'), pred_mask_final[i].astype(np.uint8))
if args.visualization:
pred_mask_final = np.array(pred_masks)
pred_mask_final = (np.argmax(pred_mask_final, axis=0).astype('uint8') + 1) * (
np.max(pred_mask_final, axis=0) > state['p'].seg_thr).astype('uint8')
COLORS = np.random.randint(128, 255, size=(object_num, 3), dtype="uint8")
COLORS = np.vstack([[0, 0, 0], COLORS]).astype("uint8")
mask = COLORS[pred_mask_final]
for f, image_file in enumerate(image_files):
output = ((0.4 * cv2.imread(image_file)) + (0.6 * mask[f,:,:,:])).astype("uint8")
cv2.imshow("mask", output)
cv2.waitKey(1)
logger.info('({:d}) Video: {:12s} Time: {:02.1f}s Speed: {:3.1f}fps'.format(
v_id, video['name'], toc, f*len(object_ids) / toc))
return multi_mean_iou, f*len(object_ids) / toc
def main():
global args, logger, v_id
args = parser.parse_args()
cfg = load_config(args)
init_log('global', logging.INFO)
if args.log != "":
add_file_handler('global', args.log, logging.INFO)
logger = logging.getLogger('global')
logger.info(args)
# setup model
if args.arch == 'Custom':
from custom import Custom
model = Custom(anchors=cfg['anchors'])
else:
parser.error('invalid architecture: {}'.format(args.arch))
if args.resume:
assert isfile(args.resume), '{} is not a valid file'.format(args.resume)
model = load_pretrain(model, args.resume)
model.eval()
device = torch.device('cuda' if (torch.cuda.is_available() and not args.cpu) else 'cpu')
model = model.to(device)
# setup dataset
dataset = load_dataset(args.dataset)
# VOS or VOT?
if args.dataset in ['DAVIS2016', 'DAVIS2017', 'ytb_vos'] and args.mask:
vos_enable = True # enable Mask output
else:
vos_enable = False
total_lost = 0 # VOT
iou_lists = [] # VOS
speed_list = []
for v_id, video in enumerate(dataset.keys(), start=1):
if args.video != '' and video != args.video:
continue
if vos_enable:
iou_list, speed = track_vos(model, dataset[video], cfg['hp'] if 'hp' in cfg.keys() else None,
args.mask, args.refine, args.dataset in ['DAVIS2017', 'ytb_vos'], device=device)
iou_lists.append(iou_list)
else:
lost, speed = track_vot(model, dataset[video], cfg['hp'] if 'hp' in cfg.keys() else None,
args.mask, args.refine, device=device)
total_lost += lost
speed_list.append(speed)
# report final result
if vos_enable:
for thr, iou in zip(thrs, np.mean(np.concatenate(iou_lists), axis=0)):
logger.info('Segmentation Threshold {:.2f} mIoU: {:.3f}'.format(thr, iou))
else:
logger.info('Total Lost: {:d}'.format(total_lost))
logger.info('Mean Speed: {:.2f} FPS'.format(np.mean(speed_list)))
if __name__ == '__main__':
main()