Spaces:
Sleeping
Sleeping
import numpy as np | |
from skimage.metrics import peak_signal_noise_ratio as psnr | |
from skimage.metrics import structural_similarity as ssim | |
import cvbase | |
import os | |
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" | |
def calculate_metrics(results_flow, gts_flow): | |
""" | |
Args: | |
results_flow: inpainted optical flow with shape [b, h, w, c], numpy array | |
gts_flow: ground truth optical flow with shape [b, h, w, c], numpy array | |
Returns: PSNR, SSIM for flow images, and L1/L2 error for flow map | |
""" | |
B, H, W, C = results_flow.shape | |
psnr_values, ssim_values, L1errors, L2errors = [], [], [], [] | |
for i in range(B): | |
result = results_flow[i] | |
gt = gts_flow[i] | |
result_img = cvbase.flow2rgb(result) | |
gt_img = cvbase.flow2rgb(gt) | |
residual = result - gt | |
L1error = np.mean(np.abs(residual)) | |
L2error = np.sum(residual ** 2) ** 0.5 / (H * W * C) | |
psnr_value = psnr(result_img, gt_img) | |
ssim_value = ssim(result_img, gt_img, multichannel=True) | |
L1errors.append(L1error) | |
L2errors.append(L2error) | |
psnr_values.append(psnr_value) | |
ssim_values.append(ssim_value) | |
L1_value = np.mean(L1errors) | |
L2_value = np.mean(L2errors) | |
psnr_value = np.mean(psnr_values) | |
ssim_value = np.mean(ssim_values) | |
return {'l1': L1_value, 'l2': L2_value, 'psnr': psnr_value, 'ssim': ssim_value} | |