oguzakif's picture
init repo
d4b77ac
raw
history blame
1.4 kB
import numpy as np
from skimage.metrics import peak_signal_noise_ratio as psnr
from skimage.metrics import structural_similarity as ssim
import cvbase
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
def calculate_metrics(results_flow, gts_flow):
"""
Args:
results_flow: inpainted optical flow with shape [b, h, w, c], numpy array
gts_flow: ground truth optical flow with shape [b, h, w, c], numpy array
Returns: PSNR, SSIM for flow images, and L1/L2 error for flow map
"""
B, H, W, C = results_flow.shape
psnr_values, ssim_values, L1errors, L2errors = [], [], [], []
for i in range(B):
result = results_flow[i]
gt = gts_flow[i]
result_img = cvbase.flow2rgb(result)
gt_img = cvbase.flow2rgb(gt)
residual = result - gt
L1error = np.mean(np.abs(residual))
L2error = np.sum(residual ** 2) ** 0.5 / (H * W * C)
psnr_value = psnr(result_img, gt_img)
ssim_value = ssim(result_img, gt_img, multichannel=True)
L1errors.append(L1error)
L2errors.append(L2error)
psnr_values.append(psnr_value)
ssim_values.append(ssim_value)
L1_value = np.mean(L1errors)
L2_value = np.mean(L2errors)
psnr_value = np.mean(psnr_values)
ssim_value = np.mean(ssim_values)
return {'l1': L1_value, 'l2': L2_value, 'psnr': psnr_value, 'ssim': ssim_value}