Spaces:
Sleeping
Sleeping
# -------------------------------------------------------- | |
# SiamMask | |
# Licensed under The MIT License | |
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn) | |
# -------------------------------------------------------- | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
from utils.anchors import Anchors | |
class SiamMask(nn.Module): | |
def __init__(self, anchors=None, o_sz=63, g_sz=127): | |
super(SiamMask, self).__init__() | |
self.anchors = anchors # anchor_cfg | |
self.anchor_num = len(self.anchors["ratios"]) * len(self.anchors["scales"]) | |
self.anchor = Anchors(anchors) | |
self.features = None | |
self.rpn_model = None | |
self.mask_model = None | |
self.o_sz = o_sz | |
self.g_sz = g_sz | |
self.upSample = nn.UpsamplingBilinear2d(size=[g_sz, g_sz]) | |
self.all_anchors = None | |
def set_all_anchors(self, image_center, size): | |
# cx,cy,w,h | |
if not self.anchor.generate_all_anchors(image_center, size): | |
return | |
all_anchors = self.anchor.all_anchors[1] # cx, cy, w, h | |
self.all_anchors = torch.from_numpy(all_anchors).float().cuda() | |
self.all_anchors = [self.all_anchors[i] for i in range(4)] | |
def feature_extractor(self, x): | |
return self.features(x) | |
def rpn(self, template, search): | |
pred_cls, pred_loc = self.rpn_model(template, search) | |
return pred_cls, pred_loc | |
def mask(self, template, search): | |
pred_mask = self.mask_model(template, search) | |
return pred_mask | |
def _add_rpn_loss(self, label_cls, label_loc, lable_loc_weight, label_mask, label_mask_weight, | |
rpn_pred_cls, rpn_pred_loc, rpn_pred_mask): | |
rpn_loss_cls = select_cross_entropy_loss(rpn_pred_cls, label_cls) | |
rpn_loss_loc = weight_l1_loss(rpn_pred_loc, label_loc, lable_loc_weight) | |
rpn_loss_mask, iou_m, iou_5, iou_7 = select_mask_logistic_loss(rpn_pred_mask, label_mask, label_mask_weight) | |
return rpn_loss_cls, rpn_loss_loc, rpn_loss_mask, iou_m, iou_5, iou_7 | |
def run(self, template, search, softmax=False): | |
""" | |
run network | |
""" | |
template_feature = self.feature_extractor(template) | |
search_feature = self.feature_extractor(search) | |
rpn_pred_cls, rpn_pred_loc = self.rpn(template_feature, search_feature) | |
rpn_pred_mask = self.mask(template_feature, search_feature) # (b, 63*63, w, h) | |
if softmax: | |
rpn_pred_cls = self.softmax(rpn_pred_cls) | |
return rpn_pred_cls, rpn_pred_loc, rpn_pred_mask, template_feature, search_feature | |
def softmax(self, cls): | |
b, a2, h, w = cls.size() | |
cls = cls.view(b, 2, a2//2, h, w) | |
cls = cls.permute(0, 2, 3, 4, 1).contiguous() | |
cls = F.log_softmax(cls, dim=4) | |
return cls | |
def forward(self, input): | |
""" | |
:param input: dict of input with keys of: | |
'template': [b, 3, h1, w1], input template image. | |
'search': [b, 3, h2, w2], input search image. | |
'label_cls':[b, max_num_gts, 5] or None(self.training==False), | |
each gt contains x1,y1,x2,y2,class. | |
:return: dict of loss, predict, accuracy | |
""" | |
template = input['template'] | |
search = input['search'] | |
if self.training: | |
label_cls = input['label_cls'] | |
label_loc = input['label_loc'] | |
lable_loc_weight = input['label_loc_weight'] | |
label_mask = input['label_mask'] | |
label_mask_weight = input['label_mask_weight'] | |
rpn_pred_cls, rpn_pred_loc, rpn_pred_mask, template_feature, search_feature = \ | |
self.run(template, search, softmax=self.training) | |
outputs = dict() | |
outputs['predict'] = [rpn_pred_loc, rpn_pred_cls, rpn_pred_mask, template_feature, search_feature] | |
if self.training: | |
rpn_loss_cls, rpn_loss_loc, rpn_loss_mask, iou_acc_mean, iou_acc_5, iou_acc_7 = \ | |
self._add_rpn_loss(label_cls, label_loc, lable_loc_weight, label_mask, label_mask_weight, | |
rpn_pred_cls, rpn_pred_loc, rpn_pred_mask) | |
outputs['losses'] = [rpn_loss_cls, rpn_loss_loc, rpn_loss_mask] | |
outputs['accuracy'] = [iou_acc_mean, iou_acc_5, iou_acc_7] | |
return outputs | |
def template(self, z): | |
self.zf = self.feature_extractor(z) | |
cls_kernel, loc_kernel = self.rpn_model.template(self.zf) | |
return cls_kernel, loc_kernel | |
def track(self, x, cls_kernel=None, loc_kernel=None, softmax=False): | |
xf = self.feature_extractor(x) | |
rpn_pred_cls, rpn_pred_loc = self.rpn_model.track(xf, cls_kernel, loc_kernel) | |
if softmax: | |
rpn_pred_cls = self.softmax(rpn_pred_cls) | |
return rpn_pred_cls, rpn_pred_loc | |
def get_cls_loss(pred, label, select): | |
if select.nelement() == 0: return pred.sum()*0. | |
pred = torch.index_select(pred, 0, select) | |
label = torch.index_select(label, 0, select) | |
return F.nll_loss(pred, label) | |
def select_cross_entropy_loss(pred, label): | |
pred = pred.view(-1, 2) | |
label = label.view(-1) | |
pos = Variable(label.data.eq(1).nonzero().squeeze()).cuda() | |
neg = Variable(label.data.eq(0).nonzero().squeeze()).cuda() | |
loss_pos = get_cls_loss(pred, label, pos) | |
loss_neg = get_cls_loss(pred, label, neg) | |
return loss_pos * 0.5 + loss_neg * 0.5 | |
def weight_l1_loss(pred_loc, label_loc, loss_weight): | |
""" | |
:param pred_loc: [b, 4k, h, w] | |
:param label_loc: [b, 4k, h, w] | |
:param loss_weight: [b, k, h, w] | |
:return: loc loss value | |
""" | |
b, _, sh, sw = pred_loc.size() | |
pred_loc = pred_loc.view(b, 4, -1, sh, sw) | |
diff = (pred_loc - label_loc).abs() | |
diff = diff.sum(dim=1).view(b, -1, sh, sw) | |
loss = diff * loss_weight | |
return loss.sum().div(b) | |
def select_mask_logistic_loss(p_m, mask, weight, o_sz=63, g_sz=127): | |
weight = weight.view(-1) | |
pos = Variable(weight.data.eq(1).nonzero().squeeze()) | |
if pos.nelement() == 0: return p_m.sum() * 0, p_m.sum() * 0, p_m.sum() * 0, p_m.sum() * 0 | |
p_m = p_m.permute(0, 2, 3, 1).contiguous().view(-1, 1, o_sz, o_sz) | |
p_m = torch.index_select(p_m, 0, pos) | |
p_m = nn.UpsamplingBilinear2d(size=[g_sz, g_sz])(p_m) | |
p_m = p_m.view(-1, g_sz * g_sz) | |
mask_uf = F.unfold(mask, (g_sz, g_sz), padding=32, stride=8) | |
mask_uf = torch.transpose(mask_uf, 1, 2).contiguous().view(-1, g_sz * g_sz) | |
mask_uf = torch.index_select(mask_uf, 0, pos) | |
loss = F.soft_margin_loss(p_m, mask_uf) | |
iou_m, iou_5, iou_7 = iou_measure(p_m, mask_uf) | |
return loss, iou_m, iou_5, iou_7 | |
def iou_measure(pred, label): | |
pred = pred.ge(0) | |
mask_sum = pred.eq(1).add(label.eq(1)) | |
intxn = torch.sum(mask_sum == 2, dim=1).float() | |
union = torch.sum(mask_sum > 0, dim=1).float() | |
iou = intxn/union | |
return torch.mean(iou), (torch.sum(iou > 0.5).float()/iou.shape[0]), (torch.sum(iou > 0.7).float()/iou.shape[0]) | |
if __name__ == "__main__": | |
p_m = torch.randn(4, 63*63, 25, 25) | |
cls = torch.randn(4, 1, 25, 25) > 0.9 | |
mask = torch.randn(4, 1, 255, 255) * 2 - 1 | |
loss = select_mask_logistic_loss(p_m, mask, cls) | |
print(loss) | |