Spaces:
Sleeping
Sleeping
# -------------------------------------------------------- | |
# SiamMask | |
# Licensed under The MIT License | |
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn) | |
# -------------------------------------------------------- | |
from __future__ import division | |
from torch.utils.data import Dataset | |
import numpy as np | |
import json | |
import random | |
import logging | |
from os.path import join | |
from utils.bbox_helper import * | |
from utils.anchors import Anchors | |
import math | |
import sys | |
pyv = sys.version[0] | |
import cv2 | |
if pyv[0] == '3': | |
cv2.ocl.setUseOpenCL(False) | |
logger = logging.getLogger('global') | |
sample_random = random.Random() | |
sample_random.seed(123456) | |
class SubDataSet(object): | |
def __init__(self, cfg): | |
for string in ['root', 'anno']: | |
if string not in cfg: | |
raise Exception('SubDataSet need "{}"'.format(string)) | |
with open(cfg['anno']) as fin: | |
logger.info("loading " + cfg['anno']) | |
self.labels = self.filter_zero(json.load(fin), cfg) | |
def isint(x): | |
try: | |
int(x) | |
return True | |
except: | |
return False | |
# add frames args into labels | |
to_del = [] | |
for video in self.labels: | |
for track in self.labels[video]: | |
frames = self.labels[video][track] | |
frames = list(map(int, filter(lambda x: isint(x), frames.keys()))) | |
frames.sort() | |
self.labels[video][track]['frames'] = frames | |
if len(frames) <= 0: | |
logger.info("warning {}/{} has no frames.".format(video, track)) | |
to_del.append((video, track)) | |
# delete tracks with no frames | |
for video, track in to_del: | |
del self.labels[video][track] | |
# delete videos with no valid track | |
to_del = [] | |
for video in self.labels: | |
if len(self.labels[video]) <= 0: | |
logger.info("warning {} has no tracks".format(video)) | |
to_del.append(video) | |
for video in to_del: | |
del self.labels[video] | |
self.videos = list(self.labels.keys()) | |
logger.info(cfg['anno'] + " loaded.") | |
# default args | |
self.root = "/" | |
self.start = 0 | |
self.num = len(self.labels) | |
self.num_use = self.num | |
self.frame_range = 100 | |
self.mark = "vid" | |
self.path_format = "{}.{}.{}.jpg" | |
self.mask_format = "{}.{}.m.png" | |
self.pick = [] | |
# input args | |
self.__dict__.update(cfg) | |
self.has_mask = self.mark in ['coco', 'ytb_vos'] | |
self.num_use = int(self.num_use) | |
# shuffle | |
self.shuffle() | |
def filter_zero(self, anno, cfg): | |
name = cfg.get('mark', '') | |
out = {} | |
tot = 0 | |
new = 0 | |
zero = 0 | |
for video, tracks in anno.items(): | |
new_tracks = {} | |
for trk, frames in tracks.items(): | |
new_frames = {} | |
for frm, bbox in frames.items(): | |
tot += 1 | |
if len(bbox) == 4: | |
x1, y1, x2, y2 = bbox | |
w, h = x2 - x1, y2 - y1 | |
else: | |
w, h = bbox | |
if w == 0 or h == 0: | |
logger.info('Error, {name} {video} {trk} {bbox}'.format(**locals())) | |
zero += 1 | |
continue | |
new += 1 | |
new_frames[frm] = bbox | |
if len(new_frames) > 0: | |
new_tracks[trk] = new_frames | |
if len(new_tracks) > 0: | |
out[video] = new_tracks | |
return out | |
def log(self): | |
logger.info('SubDataSet {name} start-index {start} select [{select}/{num}] path {format}'.format( | |
name=self.mark, start=self.start, select=self.num_use, num=self.num, format=self.path_format | |
)) | |
def shuffle(self): | |
lists = list(range(self.start, self.start + self.num)) | |
m = 0 | |
pick = [] | |
while m < self.num_use: | |
sample_random.shuffle(lists) | |
pick += lists | |
m += self.num | |
self.pick = pick[:self.num_use] | |
return self.pick | |
def get_image_anno(self, video, track, frame): | |
frame = "{:06d}".format(frame) | |
image_path = join(self.root, video, self.path_format.format(frame, track, 'x')) | |
image_anno = self.labels[video][track][frame] | |
mask_path = join(self.root, video, self.mask_format.format(frame, track)) | |
return image_path, image_anno, mask_path | |
def get_positive_pair(self, index): | |
video_name = self.videos[index] | |
video = self.labels[video_name] | |
track = random.choice(list(video.keys())) | |
track_info = video[track] | |
frames = track_info['frames'] | |
if 'hard' not in track_info: | |
template_frame = random.randint(0, len(frames)-1) | |
left = max(template_frame - self.frame_range, 0) | |
right = min(template_frame + self.frame_range, len(frames)-1) + 1 | |
search_range = frames[left:right] | |
template_frame = frames[template_frame] | |
search_frame = random.choice(search_range) | |
else: | |
search_frame = random.choice(track_info['hard']) | |
left = max(search_frame - self.frame_range, 0) | |
right = min(search_frame + self.frame_range, len(frames)-1) + 1 # python [left:right+1) = [left:right] | |
template_range = frames[left:right] | |
template_frame = random.choice(template_range) | |
search_frame = frames[search_frame] | |
return self.get_image_anno(video_name, track, template_frame), \ | |
self.get_image_anno(video_name, track, search_frame) | |
def get_random_target(self, index=-1): | |
if index == -1: | |
index = random.randint(0, self.num-1) | |
video_name = self.videos[index] | |
video = self.labels[video_name] | |
track = random.choice(list(video.keys())) | |
track_info = video[track] | |
frames = track_info['frames'] | |
frame = random.choice(frames) | |
return self.get_image_anno(video_name, track, frame) | |
def crop_hwc(image, bbox, out_sz, padding=(0, 0, 0)): | |
bbox = [float(x) for x in bbox] | |
a = (out_sz-1) / (bbox[2]-bbox[0]) | |
b = (out_sz-1) / (bbox[3]-bbox[1]) | |
c = -a * bbox[0] | |
d = -b * bbox[1] | |
mapping = np.array([[a, 0, c], | |
[0, b, d]]).astype(np.float) | |
crop = cv2.warpAffine(image, mapping, (out_sz, out_sz), borderMode=cv2.BORDER_CONSTANT, borderValue=padding) | |
return crop | |
class Augmentation: | |
def __init__(self, cfg): | |
# default args | |
self.shift = 0 | |
self.scale = 0 | |
self.blur = 0 # False | |
self.resize = False | |
self.rgbVar = np.array([[-0.55919361, 0.98062831, - 0.41940627], | |
[1.72091413, 0.19879334, - 1.82968581], | |
[4.64467907, 4.73710203, 4.88324118]], dtype=np.float32) | |
self.flip = 0 | |
self.eig_vec = np.array([ | |
[0.4009, 0.7192, -0.5675], | |
[-0.8140, -0.0045, -0.5808], | |
[0.4203, -0.6948, -0.5836], | |
], dtype=np.float32) | |
self.eig_val = np.array([[0.2175, 0.0188, 0.0045]], np.float32) | |
self.__dict__.update(cfg) | |
def random(): | |
return random.random() * 2 - 1.0 | |
def blur_image(self, image): | |
def rand_kernel(): | |
size = np.random.randn(1) | |
size = int(np.round(size)) * 2 + 1 | |
if size < 0: return None | |
if random.random() < 0.5: return None | |
size = min(size, 45) | |
kernel = np.zeros((size, size)) | |
c = int(size/2) | |
wx = random.random() | |
kernel[:, c] += 1. / size * wx | |
kernel[c, :] += 1. / size * (1-wx) | |
return kernel | |
kernel = rand_kernel() | |
if kernel is not None: | |
image = cv2.filter2D(image, -1, kernel) | |
return image | |
def __call__(self, image, bbox, size, gray=False, mask=None): | |
if gray: | |
grayed = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
image = np.zeros((grayed.shape[0], grayed.shape[1], 3), np.uint8) | |
image[:, :, 0] = image[:, :, 1] = image[:, :, 2] = grayed | |
shape = image.shape | |
crop_bbox = center2corner((shape[0]//2, shape[1]//2, size-1, size-1)) | |
param = {} | |
if self.shift: | |
param['shift'] = (Augmentation.random() * self.shift, Augmentation.random() * self.shift) | |
if self.scale: | |
param['scale'] = ((1.0 + Augmentation.random() * self.scale), (1.0 + Augmentation.random() * self.scale)) | |
crop_bbox, _ = aug_apply(Corner(*crop_bbox), param, shape) | |
x1 = crop_bbox.x1 | |
y1 = crop_bbox.y1 | |
bbox = BBox(bbox.x1 - x1, bbox.y1 - y1, | |
bbox.x2 - x1, bbox.y2 - y1) | |
if self.scale: | |
scale_x, scale_y = param['scale'] | |
bbox = Corner(bbox.x1 / scale_x, bbox.y1 / scale_y, bbox.x2 / scale_x, bbox.y2 / scale_y) | |
image = crop_hwc(image, crop_bbox, size) | |
if not mask is None: | |
mask = crop_hwc(mask, crop_bbox, size) | |
offset = np.dot(self.rgbVar, np.random.randn(3, 1)) | |
offset = offset[::-1] # bgr 2 rgb | |
offset = offset.reshape(3) | |
image = image - offset | |
if self.blur > random.random(): | |
image = self.blur_image(image) | |
if self.resize: | |
imageSize = image.shape[:2] | |
ratio = max(math.pow(random.random(), 0.5), 0.2) # 25 ~ 255 | |
rand_size = (int(round(ratio*imageSize[0])), int(round(ratio*imageSize[1]))) | |
image = cv2.resize(image, rand_size) | |
image = cv2.resize(image, tuple(imageSize)) | |
if self.flip and self.flip > Augmentation.random(): | |
image = cv2.flip(image, 1) | |
mask = cv2.flip(mask, 1) | |
width = image.shape[1] | |
bbox = Corner(width - 1 - bbox.x2, bbox.y1, width - 1 - bbox.x1, bbox.y2) | |
return image, bbox, mask | |
class AnchorTargetLayer: | |
def __init__(self, cfg): | |
self.thr_high = 0.6 | |
self.thr_low = 0.3 | |
self.negative = 16 | |
self.rpn_batch = 64 | |
self.positive = 16 | |
self.__dict__.update(cfg) | |
def __call__(self, anchor, target, size, neg=False, need_iou=False): | |
anchor_num = anchor.anchors.shape[0] | |
cls = np.zeros((anchor_num, size, size), dtype=np.int64) | |
cls[...] = -1 # -1 ignore 0 negative 1 positive | |
delta = np.zeros((4, anchor_num, size, size), dtype=np.float32) | |
delta_weight = np.zeros((anchor_num, size, size), dtype=np.float32) | |
def select(position, keep_num=16): | |
num = position[0].shape[0] | |
if num <= keep_num: | |
return position, num | |
slt = np.arange(num) | |
np.random.shuffle(slt) | |
slt = slt[:keep_num] | |
return tuple(p[slt] for p in position), keep_num | |
if neg: | |
l = size // 2 - 3 | |
r = size // 2 + 3 + 1 | |
cls[:, l:r, l:r] = 0 | |
neg, neg_num = select(np.where(cls == 0), self.negative) | |
cls[:] = -1 | |
cls[neg] = 0 | |
if not need_iou: | |
return cls, delta, delta_weight | |
else: | |
overlap = np.zeros((anchor_num, size, size), dtype=np.float32) | |
return cls, delta, delta_weight, overlap | |
tcx, tcy, tw, th = corner2center(target) | |
anchor_box = anchor.all_anchors[0] | |
anchor_center = anchor.all_anchors[1] | |
x1, y1, x2, y2 = anchor_box[0], anchor_box[1], anchor_box[2], anchor_box[3] | |
cx, cy, w, h = anchor_center[0], anchor_center[1], anchor_center[2], anchor_center[3] | |
# delta | |
delta[0] = (tcx - cx) / w | |
delta[1] = (tcy - cy) / h | |
delta[2] = np.log(tw / w) | |
delta[3] = np.log(th / h) | |
# IoU | |
overlap = IoU([x1, y1, x2, y2], target) | |
pos = np.where(overlap > self.thr_high) | |
neg = np.where(overlap < self.thr_low) | |
pos, pos_num = select(pos, self.positive) | |
neg, neg_num = select(neg, self.rpn_batch - pos_num) | |
cls[pos] = 1 | |
delta_weight[pos] = 1. / (pos_num + 1e-6) | |
cls[neg] = 0 | |
if not need_iou: | |
return cls, delta, delta_weight | |
else: | |
return cls, delta, delta_weight, overlap | |
class DataSets(Dataset): | |
def __init__(self, cfg, anchor_cfg, num_epoch=1): | |
super(DataSets, self).__init__() | |
global logger | |
logger = logging.getLogger('global') | |
# anchors | |
self.anchors = Anchors(anchor_cfg) | |
# size | |
self.template_size = 127 | |
self.origin_size = 127 | |
self.search_size = 255 | |
self.size = 17 | |
self.base_size = 0 | |
self.crop_size = 0 | |
if 'template_size' in cfg: | |
self.template_size = cfg['template_size'] | |
if 'origin_size' in cfg: | |
self.origin_size = cfg['origin_size'] | |
if 'search_size' in cfg: | |
self.search_size = cfg['search_size'] | |
if 'base_size' in cfg: | |
self.base_size = cfg['base_size'] | |
if 'size' in cfg: | |
self.size = cfg['size'] | |
if (self.search_size - self.template_size) / self.anchors.stride + 1 + self.base_size != self.size: | |
raise Exception("size not match!") # TODO: calculate size online | |
if 'crop_size' in cfg: | |
self.crop_size = cfg['crop_size'] | |
self.template_small = False | |
if 'template_small' in cfg and cfg['template_small']: | |
self.template_small = True | |
self.anchors.generate_all_anchors(im_c=self.search_size//2, size=self.size) | |
if 'anchor_target' not in cfg: | |
cfg['anchor_target'] = {} | |
self.anchor_target = AnchorTargetLayer(cfg['anchor_target']) | |
# data sets | |
if 'datasets' not in cfg: | |
raise(Exception('DataSet need "{}"'.format('datasets'))) | |
self.all_data = [] | |
start = 0 | |
self.num = 0 | |
for name in cfg['datasets']: | |
dataset = cfg['datasets'][name] | |
dataset['mark'] = name | |
dataset['start'] = start | |
dataset = SubDataSet(dataset) | |
dataset.log() | |
self.all_data.append(dataset) | |
start += dataset.num # real video number | |
self.num += dataset.num_use # the number used for subset shuffle | |
# data augmentation | |
aug_cfg = cfg['augmentation'] | |
self.template_aug = Augmentation(aug_cfg['template']) | |
self.search_aug = Augmentation(aug_cfg['search']) | |
self.gray = aug_cfg['gray'] | |
self.neg = aug_cfg['neg'] | |
self.inner_neg = 0 if 'inner_neg' not in aug_cfg else aug_cfg['inner_neg'] | |
self.pick = None # list to save id for each img | |
if 'num' in cfg: # number used in training for all dataset | |
self.num = int(cfg['num']) | |
self.num *= num_epoch | |
self.shuffle() | |
self.infos = { | |
'template': self.template_size, | |
'search': self.search_size, | |
'template_small': self.template_small, | |
'gray': self.gray, | |
'neg': self.neg, | |
'inner_neg': self.inner_neg, | |
'crop_size': self.crop_size, | |
'anchor_target': self.anchor_target.__dict__, | |
'num': self.num // num_epoch | |
} | |
logger.info('dataset informations: \n{}'.format(json.dumps(self.infos, indent=4))) | |
def imread(self, path): | |
img = cv2.imread(path) | |
if self.origin_size == self.template_size: | |
return img, 1.0 | |
def map_size(exe, size): | |
return int(round(((exe + 1) / (self.origin_size + 1) * (size+1) - 1))) | |
nsize = map_size(self.template_size, img.shape[1]) | |
img = cv2.resize(img, (nsize, nsize)) | |
return img, nsize / img.shape[1] | |
def shuffle(self): | |
pick = [] | |
m = 0 | |
while m < self.num: | |
p = [] | |
for subset in self.all_data: | |
sub_p = subset.shuffle() | |
p += sub_p | |
sample_random.shuffle(p) | |
pick += p | |
m = len(pick) | |
self.pick = pick | |
logger.info("shuffle done!") | |
logger.info("dataset length {}".format(self.num)) | |
def __len__(self): | |
return self.num | |
def find_dataset(self, index): | |
for dataset in self.all_data: | |
if dataset.start + dataset.num > index: | |
return dataset, index - dataset.start | |
def __getitem__(self, index, debug=False): | |
index = self.pick[index] | |
dataset, index = self.find_dataset(index) | |
gray = self.gray and self.gray > random.random() | |
neg = self.neg and self.neg > random.random() | |
if neg: | |
template = dataset.get_random_target(index) | |
if self.inner_neg and self.inner_neg > random.random(): | |
search = dataset.get_random_target() | |
else: | |
search = random.choice(self.all_data).get_random_target() | |
else: | |
template, search = dataset.get_positive_pair(index) | |
def center_crop(img, size): | |
shape = img.shape[1] | |
if shape == size: return img | |
c = shape // 2 | |
l = c - size // 2 | |
r = c + size // 2 + 1 | |
return img[l:r, l:r] | |
template_image, scale_z = self.imread(template[0]) | |
if self.template_small: | |
template_image = center_crop(template_image, self.template_size) | |
search_image, scale_x = self.imread(search[0]) | |
if dataset.has_mask and not neg: | |
search_mask = (cv2.imread(search[2], 0) > 0).astype(np.float32) | |
else: | |
search_mask = np.zeros(search_image.shape[:2], dtype=np.float32) | |
if self.crop_size > 0: | |
search_image = center_crop(search_image, self.crop_size) | |
search_mask = center_crop(search_mask, self.crop_size) | |
def toBBox(image, shape): | |
imh, imw = image.shape[:2] | |
if len(shape) == 4: | |
w, h = shape[2]-shape[0], shape[3]-shape[1] | |
else: | |
w, h = shape | |
context_amount = 0.5 | |
exemplar_size = self.template_size # 127 | |
wc_z = w + context_amount * (w+h) | |
hc_z = h + context_amount * (w+h) | |
s_z = np.sqrt(wc_z * hc_z) | |
scale_z = exemplar_size / s_z | |
w = w*scale_z | |
h = h*scale_z | |
cx, cy = imw//2, imh//2 | |
bbox = center2corner(Center(cx, cy, w, h)) | |
return bbox | |
template_box = toBBox(template_image, template[1]) | |
search_box = toBBox(search_image, search[1]) | |
template, _, _ = self.template_aug(template_image, template_box, self.template_size, gray=gray) | |
search, bbox, mask = self.search_aug(search_image, search_box, self.search_size, gray=gray, mask=search_mask) | |
def draw(image, box, name): | |
image = image.copy() | |
x1, y1, x2, y2 = map(lambda x: int(round(x)), box) | |
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0)) | |
cv2.imwrite(name, image) | |
if debug: | |
draw(template_image, template_box, "debug/{:06d}_ot.jpg".format(index)) | |
draw(search_image, search_box, "debug/{:06d}_os.jpg".format(index)) | |
draw(template, _, "debug/{:06d}_t.jpg".format(index)) | |
draw(search, bbox, "debug/{:06d}_s.jpg".format(index)) | |
cls, delta, delta_weight = self.anchor_target(self.anchors, bbox, self.size, neg) | |
if dataset.has_mask and not neg: | |
mask_weight = cls.max(axis=0, keepdims=True) | |
else: | |
mask_weight = np.zeros([1, cls.shape[1], cls.shape[2]], dtype=np.float32) | |
template, search = map(lambda x: np.transpose(x, (2, 0, 1)).astype(np.float32), [template, search]) | |
mask = (np.expand_dims(mask, axis=0) > 0.5) * 2 - 1 # 1*H*W | |
return template, search, cls, delta, delta_weight, np.array(bbox, np.float32), \ | |
np.array(mask, np.float32), np.array(mask_weight, np.float32) | |