Spaces:
Running
on
T4
Running
on
T4
# -------------------------------------------------------- | |
# SiamMask | |
# Licensed under The MIT License | |
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn) | |
# -------------------------------------------------------- | |
from __future__ import division | |
import argparse | |
import logging | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import os | |
from os import makedirs | |
from os.path import join, isdir, isfile | |
import sys | |
sys.path.append(os.path.abspath(os.path.join(__file__, "..", ".."))) | |
sys.path.append(os.path.abspath(os.path.join(__file__, "..","..","utils"))) | |
from SiamMask.utils.log_helper import init_log, add_file_handler | |
from SiamMask.utils.load_helper import load_pretrain | |
from SiamMask.utils.bbox_helper import get_axis_aligned_bbox, cxy_wh_2_rect | |
from SiamMask.utils.benchmark_helper import load_dataset, dataset_zoo | |
import torch | |
from torch.autograd import Variable | |
import torch.nn.functional as F | |
from SiamMask.utils.anchors import Anchors | |
from SiamMask.utils.tracker_config import TrackerConfig | |
from SiamMask.utils.config_helper import load_config | |
from SiamMask.utils.pyvotkit.region import vot_overlap, vot_float2str | |
thrs = np.arange(0.3, 0.5, 0.05) | |
parser = argparse.ArgumentParser(description='Test SiamMask') | |
parser.add_argument('--arch', dest='arch', default='', choices=['Custom',], | |
help='architecture of pretrained model') | |
parser.add_argument('--config', dest='config', required=True, help='hyper-parameter for SiamMask') | |
parser.add_argument('--resume', default='', type=str, required=True, | |
metavar='PATH', help='path to latest checkpoint (default: none)') | |
parser.add_argument('--mask', action='store_true', help='whether use mask output') | |
parser.add_argument('--refine', action='store_true', help='whether use mask refine output') | |
parser.add_argument('--dataset', dest='dataset', default='VOT2018', choices=dataset_zoo, | |
help='datasets') | |
parser.add_argument('-l', '--log', default="log_test.txt", type=str, help='log file') | |
parser.add_argument('-v', '--visualization', dest='visualization', action='store_true', | |
help='whether visualize result') | |
parser.add_argument('--save_mask', action='store_true', help='whether use save mask for davis') | |
parser.add_argument('--gt', action='store_true', help='whether use gt rect for davis (Oracle)') | |
parser.add_argument('--video', default='', type=str, help='test special video') | |
parser.add_argument('--cpu', action='store_true', help='cpu mode') | |
parser.add_argument('--debug', action='store_true', help='debug mode') | |
def to_torch(ndarray): | |
if type(ndarray).__module__ == 'numpy': | |
return torch.from_numpy(ndarray) | |
elif not torch.is_tensor(ndarray): | |
raise ValueError("Cannot convert {} to torch tensor" | |
.format(type(ndarray))) | |
return ndarray | |
def im_to_torch(img): | |
img = np.transpose(img, (2, 0, 1)) # C*H*W | |
img = to_torch(img).float() | |
return img | |
def get_subwindow_tracking(im, pos, model_sz, original_sz, avg_chans, out_mode='torch'): | |
if isinstance(pos, float): | |
pos = [pos, pos] | |
sz = original_sz | |
im_sz = im.shape | |
c = (original_sz + 1) / 2 | |
context_xmin = round(pos[0] - c) | |
context_xmax = context_xmin + sz - 1 | |
context_ymin = round(pos[1] - c) | |
context_ymax = context_ymin + sz - 1 | |
left_pad = int(max(0., -context_xmin)) | |
top_pad = int(max(0., -context_ymin)) | |
right_pad = int(max(0., context_xmax - im_sz[1] + 1)) | |
bottom_pad = int(max(0., context_ymax - im_sz[0] + 1)) | |
context_xmin = context_xmin + left_pad | |
context_xmax = context_xmax + left_pad | |
context_ymin = context_ymin + top_pad | |
context_ymax = context_ymax + top_pad | |
# zzp: a more easy speed version | |
r, c, k = im.shape | |
if any([top_pad, bottom_pad, left_pad, right_pad]): | |
te_im = np.zeros((r + top_pad + bottom_pad, c + left_pad + right_pad, k), np.uint8) | |
te_im[top_pad:top_pad + r, left_pad:left_pad + c, :] = im | |
if top_pad: | |
te_im[0:top_pad, left_pad:left_pad + c, :] = avg_chans | |
if bottom_pad: | |
te_im[r + top_pad:, left_pad:left_pad + c, :] = avg_chans | |
if left_pad: | |
te_im[:, 0:left_pad, :] = avg_chans | |
if right_pad: | |
te_im[:, c + left_pad:, :] = avg_chans | |
im_patch_original = te_im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :] | |
else: | |
im_patch_original = im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :] | |
if not np.array_equal(model_sz, original_sz): | |
im_patch = cv2.resize(im_patch_original, (model_sz, model_sz)) | |
else: | |
im_patch = im_patch_original | |
# cv2.imshow('crop', im_patch) | |
# cv2.waitKey(0) | |
return im_to_torch(im_patch) if out_mode in 'torch' else im_patch | |
def generate_anchor(cfg, score_size): | |
anchors = Anchors(cfg) | |
anchor = anchors.anchors | |
x1, y1, x2, y2 = anchor[:, 0], anchor[:, 1], anchor[:, 2], anchor[:, 3] | |
anchor = np.stack([(x1+x2)*0.5, (y1+y2)*0.5, x2-x1, y2-y1], 1) | |
total_stride = anchors.stride | |
anchor_num = anchor.shape[0] | |
anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4)) | |
ori = - (score_size // 2) * total_stride | |
xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)], | |
[ori + total_stride * dy for dy in range(score_size)]) | |
xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \ | |
np.tile(yy.flatten(), (anchor_num, 1)).flatten() | |
anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32) | |
return anchor | |
def siamese_init(im, target_pos, target_sz, model, hp=None, device='cpu'): | |
state = dict() | |
state['im_h'] = im.shape[0] | |
state['im_w'] = im.shape[1] | |
p = TrackerConfig() | |
p.update(hp, model.anchors) | |
p.renew() | |
net = model | |
p.scales = model.anchors['scales'] | |
p.ratios = model.anchors['ratios'] | |
p.anchor_num = model.anchor_num | |
p.anchor = generate_anchor(model.anchors, p.score_size) | |
avg_chans = np.mean(im, axis=(0, 1)) | |
wc_z = target_sz[0] + p.context_amount * sum(target_sz) | |
hc_z = target_sz[1] + p.context_amount * sum(target_sz) | |
s_z = round(np.sqrt(wc_z * hc_z)) | |
# initialize the exemplar | |
z_crop = get_subwindow_tracking(im, target_pos, p.exemplar_size, s_z, avg_chans) | |
z = Variable(z_crop.unsqueeze(0)) | |
net.template(z.to(device)) | |
if p.windowing == 'cosine': | |
window = np.outer(np.hanning(p.score_size), np.hanning(p.score_size)) | |
elif p.windowing == 'uniform': | |
window = np.ones((p.score_size, p.score_size)) | |
window = np.tile(window.flatten(), p.anchor_num) | |
state['p'] = p | |
state['net'] = net | |
state['avg_chans'] = avg_chans | |
state['window'] = window | |
state['target_pos'] = target_pos | |
state['target_sz'] = target_sz | |
return state | |
def siamese_track(state, im, mask_enable=False, refine_enable=False, device='cpu', debug=False): | |
p = state['p'] | |
net = state['net'] | |
avg_chans = state['avg_chans'] | |
window = state['window'] | |
target_pos = state['target_pos'] | |
target_sz = state['target_sz'] | |
wc_x = target_sz[1] + p.context_amount * sum(target_sz) | |
hc_x = target_sz[0] + p.context_amount * sum(target_sz) | |
s_x = np.sqrt(wc_x * hc_x) | |
scale_x = p.exemplar_size / s_x | |
d_search = (p.instance_size - p.exemplar_size) / 2 | |
pad = d_search / scale_x | |
s_x = s_x + 2 * pad | |
crop_box = [target_pos[0] - round(s_x) / 2, target_pos[1] - round(s_x) / 2, round(s_x), round(s_x)] | |
if debug: | |
im_debug = im.copy() | |
crop_box_int = np.int0(crop_box) | |
cv2.rectangle(im_debug, (crop_box_int[0], crop_box_int[1]), | |
(crop_box_int[0] + crop_box_int[2], crop_box_int[1] + crop_box_int[3]), (255, 0, 0), 2) | |
cv2.imshow('search area', im_debug) | |
cv2.waitKey(0) | |
# extract scaled crops for search region x at previous target position | |
x_crop = Variable(get_subwindow_tracking(im, target_pos, p.instance_size, round(s_x), avg_chans).unsqueeze(0)) | |
if mask_enable: | |
score, delta, mask = net.track_mask(x_crop.to(device)) | |
else: | |
score, delta = net.track(x_crop.to(device)) | |
delta = delta.permute(1, 2, 3, 0).contiguous().view(4, -1).data.cpu().numpy() | |
score = F.softmax(score.permute(1, 2, 3, 0).contiguous().view(2, -1).permute(1, 0), dim=1).data[:, | |
1].cpu().numpy() | |
delta[0, :] = delta[0, :] * p.anchor[:, 2] + p.anchor[:, 0] | |
delta[1, :] = delta[1, :] * p.anchor[:, 3] + p.anchor[:, 1] | |
delta[2, :] = np.exp(delta[2, :]) * p.anchor[:, 2] | |
delta[3, :] = np.exp(delta[3, :]) * p.anchor[:, 3] | |
def change(r): | |
return np.maximum(r, 1. / r) | |
def sz(w, h): | |
pad = (w + h) * 0.5 | |
sz2 = (w + pad) * (h + pad) | |
return np.sqrt(sz2) | |
def sz_wh(wh): | |
pad = (wh[0] + wh[1]) * 0.5 | |
sz2 = (wh[0] + pad) * (wh[1] + pad) | |
return np.sqrt(sz2) | |
# size penalty | |
target_sz_in_crop = target_sz*scale_x | |
s_c = change(sz(delta[2, :], delta[3, :]) / (sz_wh(target_sz_in_crop))) # scale penalty | |
r_c = change((target_sz_in_crop[0] / target_sz_in_crop[1]) / (delta[2, :] / delta[3, :])) # ratio penalty | |
penalty = np.exp(-(r_c * s_c - 1) * p.penalty_k) | |
pscore = penalty * score | |
# cos window (motion model) | |
pscore = pscore * (1 - p.window_influence) + window * p.window_influence | |
best_pscore_id = np.argmax(pscore) | |
pred_in_crop = delta[:, best_pscore_id] / scale_x | |
lr = penalty[best_pscore_id] * score[best_pscore_id] * p.lr # lr for OTB | |
res_x = pred_in_crop[0] + target_pos[0] | |
res_y = pred_in_crop[1] + target_pos[1] | |
res_w = target_sz[0] * (1 - lr) + pred_in_crop[2] * lr | |
res_h = target_sz[1] * (1 - lr) + pred_in_crop[3] * lr | |
target_pos = np.array([res_x, res_y]) | |
target_sz = np.array([res_w, res_h]) | |
# for Mask Branch | |
if mask_enable: | |
best_pscore_id_mask = np.unravel_index(best_pscore_id, (5, p.score_size, p.score_size)) | |
delta_x, delta_y = best_pscore_id_mask[2], best_pscore_id_mask[1] | |
if refine_enable: | |
mask = net.track_refine((delta_y, delta_x)).to(device).sigmoid().squeeze().view( | |
p.out_size, p.out_size).cpu().data.numpy() | |
else: | |
mask = mask[0, :, delta_y, delta_x].sigmoid(). \ | |
squeeze().view(p.out_size, p.out_size).cpu().data.numpy() | |
def crop_back(image, bbox, out_sz, padding=-1): | |
a = (out_sz[0] - 1) / bbox[2] | |
b = (out_sz[1] - 1) / bbox[3] | |
c = -a * bbox[0] | |
d = -b * bbox[1] | |
mapping = np.array([[a, 0, c], | |
[0, b, d]]).astype(np.float) | |
crop = cv2.warpAffine(image, mapping, (out_sz[0], out_sz[1]), | |
flags=cv2.INTER_LINEAR, | |
borderMode=cv2.BORDER_CONSTANT, | |
borderValue=padding) | |
return crop | |
s = crop_box[2] / p.instance_size | |
sub_box = [crop_box[0] + (delta_x - p.base_size / 2) * p.total_stride * s, | |
crop_box[1] + (delta_y - p.base_size / 2) * p.total_stride * s, | |
s * p.exemplar_size, s * p.exemplar_size] | |
s = p.out_size / sub_box[2] | |
back_box = [-sub_box[0] * s, -sub_box[1] * s, state['im_w'] * s, state['im_h'] * s] | |
mask_in_img = crop_back(mask, back_box, (state['im_w'], state['im_h'])) | |
target_mask = (mask_in_img > p.seg_thr).astype(np.uint8) | |
if cv2.__version__[-5] == '4': | |
contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
else: | |
_, contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
cnt_area = [cv2.contourArea(cnt) for cnt in contours] | |
if len(contours) != 0 and np.max(cnt_area) > 100: | |
contour = contours[np.argmax(cnt_area)] # use max area polygon | |
polygon = contour.reshape(-1, 2) | |
# pbox = cv2.boundingRect(polygon) # Min Max Rectangle | |
prbox = cv2.boxPoints(cv2.minAreaRect(polygon)) # Rotated Rectangle | |
# box_in_img = pbox | |
rbox_in_img = prbox | |
else: # empty mask | |
location = cxy_wh_2_rect(target_pos, target_sz) | |
rbox_in_img = np.array([[location[0], location[1]], | |
[location[0] + location[2], location[1]], | |
[location[0] + location[2], location[1] + location[3]], | |
[location[0], location[1] + location[3]]]) | |
target_pos[0] = max(0, min(state['im_w'], target_pos[0])) | |
target_pos[1] = max(0, min(state['im_h'], target_pos[1])) | |
target_sz[0] = max(10, min(state['im_w'], target_sz[0])) | |
target_sz[1] = max(10, min(state['im_h'], target_sz[1])) | |
state['target_pos'] = target_pos | |
state['target_sz'] = target_sz | |
state['score'] = score[best_pscore_id] | |
state['mask'] = mask_in_img if mask_enable else [] | |
state['ploygon'] = rbox_in_img if mask_enable else [] | |
return state | |
def track_vot(model, video, hp=None, mask_enable=False, refine_enable=False, device='cpu'): | |
regions = [] # result and states[1 init / 2 lost / 0 skip] | |
image_files, gt = video['image_files'], video['gt'] | |
start_frame, end_frame, lost_times, toc = 0, len(image_files), 0, 0 | |
for f, image_file in enumerate(image_files): | |
im = cv2.imread(image_file) | |
tic = cv2.getTickCount() | |
if f == start_frame: # init | |
cx, cy, w, h = get_axis_aligned_bbox(gt[f]) | |
target_pos = np.array([cx, cy]) | |
target_sz = np.array([w, h]) | |
state = siamese_init(im, target_pos, target_sz, model, hp, device) # init tracker | |
location = cxy_wh_2_rect(state['target_pos'], state['target_sz']) | |
regions.append(1 if 'VOT' in args.dataset else gt[f]) | |
elif f > start_frame: # tracking | |
state = siamese_track(state, im, mask_enable, refine_enable, device, args.debug) # track | |
if mask_enable: | |
location = state['ploygon'].flatten() | |
mask = state['mask'] | |
else: | |
location = cxy_wh_2_rect(state['target_pos'], state['target_sz']) | |
mask = [] | |
if 'VOT' in args.dataset: | |
gt_polygon = ((gt[f][0], gt[f][1]), (gt[f][2], gt[f][3]), | |
(gt[f][4], gt[f][5]), (gt[f][6], gt[f][7])) | |
if mask_enable: | |
pred_polygon = ((location[0], location[1]), (location[2], location[3]), | |
(location[4], location[5]), (location[6], location[7])) | |
else: | |
pred_polygon = ((location[0], location[1]), | |
(location[0] + location[2], location[1]), | |
(location[0] + location[2], location[1] + location[3]), | |
(location[0], location[1] + location[3])) | |
b_overlap = vot_overlap(gt_polygon, pred_polygon, (im.shape[1], im.shape[0])) | |
else: | |
b_overlap = 1 | |
if b_overlap: | |
regions.append(location) | |
else: # lost | |
regions.append(2) | |
lost_times += 1 | |
start_frame = f + 5 # skip 5 frames | |
else: # skip | |
regions.append(0) | |
toc += cv2.getTickCount() - tic | |
if args.visualization and f >= start_frame: # visualization (skip lost frame) | |
im_show = im.copy() | |
if f == 0: cv2.destroyAllWindows() | |
if gt.shape[0] > f: | |
if len(gt[f]) == 8: | |
cv2.polylines(im_show, [np.array(gt[f], np.int).reshape((-1, 1, 2))], True, (0, 255, 0), 3) | |
else: | |
cv2.rectangle(im_show, (gt[f, 0], gt[f, 1]), (gt[f, 0] + gt[f, 2], gt[f, 1] + gt[f, 3]), (0, 255, 0), 3) | |
if len(location) == 8: | |
if mask_enable: | |
mask = mask > state['p'].seg_thr | |
im_show[:, :, 2] = mask * 255 + (1 - mask) * im_show[:, :, 2] | |
location_int = np.int0(location) | |
cv2.polylines(im_show, [location_int.reshape((-1, 1, 2))], True, (0, 255, 255), 3) | |
else: | |
location = [int(l) for l in location] | |
cv2.rectangle(im_show, (location[0], location[1]), | |
(location[0] + location[2], location[1] + location[3]), (0, 255, 255), 3) | |
cv2.putText(im_show, str(f), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2) | |
cv2.putText(im_show, str(lost_times), (40, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) | |
cv2.putText(im_show, str(state['score']) if 'score' in state else '', (40, 120), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) | |
cv2.imshow(video['name'], im_show) | |
cv2.waitKey(1) | |
toc /= cv2.getTickFrequency() | |
# save result | |
name = args.arch.split('.')[0] + '_' + ('mask_' if mask_enable else '') + ('refine_' if refine_enable else '') +\ | |
args.resume.split('/')[-1].split('.')[0] | |
if 'VOT' in args.dataset: | |
video_path = join('test', args.dataset, name, | |
'baseline', video['name']) | |
if not isdir(video_path): makedirs(video_path) | |
result_path = join(video_path, '{:s}_001.txt'.format(video['name'])) | |
with open(result_path, "w") as fin: | |
for x in regions: | |
fin.write("{:d}\n".format(x)) if isinstance(x, int) else \ | |
fin.write(','.join([vot_float2str("%.4f", i) for i in x]) + '\n') | |
else: # OTB | |
video_path = join('test', args.dataset, name) | |
if not isdir(video_path): makedirs(video_path) | |
result_path = join(video_path, '{:s}.txt'.format(video['name'])) | |
with open(result_path, "w") as fin: | |
for x in regions: | |
fin.write(','.join([str(i) for i in x])+'\n') | |
logger.info('({:d}) Video: {:12s} Time: {:02.1f}s Speed: {:3.1f}fps Lost: {:d}'.format( | |
v_id, video['name'], toc, f / toc, lost_times)) | |
return lost_times, f / toc | |
def MultiBatchIouMeter(thrs, outputs, targets, start=None, end=None): | |
targets = np.array(targets) | |
outputs = np.array(outputs) | |
num_frame = targets.shape[0] | |
if start is None: | |
object_ids = np.array(list(range(outputs.shape[0]))) + 1 | |
else: | |
object_ids = [int(id) for id in start] | |
num_object = len(object_ids) | |
res = np.zeros((num_object, len(thrs)), dtype=np.float32) | |
output_max_id = np.argmax(outputs, axis=0).astype('uint8')+1 | |
outputs_max = np.max(outputs, axis=0) | |
for k, thr in enumerate(thrs): | |
output_thr = outputs_max > thr | |
for j in range(num_object): | |
target_j = targets == object_ids[j] | |
if start is None: | |
start_frame, end_frame = 1, num_frame - 1 | |
else: | |
start_frame, end_frame = start[str(object_ids[j])] + 1, end[str(object_ids[j])] - 1 | |
iou = [] | |
for i in range(start_frame, end_frame): | |
pred = (output_thr[i] * output_max_id[i]) == (j+1) | |
mask_sum = (pred == 1).astype(np.uint8) + (target_j[i] > 0).astype(np.uint8) | |
intxn = np.sum(mask_sum == 2) | |
union = np.sum(mask_sum > 0) | |
if union > 0: | |
iou.append(intxn / union) | |
elif union == 0 and intxn == 0: | |
iou.append(1) | |
res[j, k] = np.mean(iou) | |
return res | |
def track_vos(model, video, hp=None, mask_enable=False, refine_enable=False, mot_enable=False, device='cpu'): | |
image_files = video['image_files'] | |
annos = [np.array(Image.open(x)) for x in video['anno_files']] | |
if 'anno_init_files' in video: | |
annos_init = [np.array(Image.open(x)) for x in video['anno_init_files']] | |
else: | |
annos_init = [annos[0]] | |
if not mot_enable: | |
annos = [(anno > 0).astype(np.uint8) for anno in annos] | |
annos_init = [(anno_init > 0).astype(np.uint8) for anno_init in annos_init] | |
if 'start_frame' in video: | |
object_ids = [int(id) for id in video['start_frame']] | |
else: | |
object_ids = [o_id for o_id in np.unique(annos[0]) if o_id != 0] | |
if len(object_ids) != len(annos_init): | |
annos_init = annos_init*len(object_ids) | |
object_num = len(object_ids) | |
toc = 0 | |
pred_masks = np.zeros((object_num, len(image_files), annos[0].shape[0], annos[0].shape[1]))-1 | |
for obj_id, o_id in enumerate(object_ids): | |
if 'start_frame' in video: | |
start_frame = video['start_frame'][str(o_id)] | |
end_frame = video['end_frame'][str(o_id)] | |
else: | |
start_frame, end_frame = 0, len(image_files) | |
for f, image_file in enumerate(image_files): | |
im = cv2.imread(image_file) | |
tic = cv2.getTickCount() | |
if f == start_frame: # init | |
mask = annos_init[obj_id] == o_id | |
x, y, w, h = cv2.boundingRect((mask).astype(np.uint8)) | |
cx, cy = x + w/2, y + h/2 | |
target_pos = np.array([cx, cy]) | |
target_sz = np.array([w, h]) | |
state = siamese_init(im, target_pos, target_sz, model, hp, device=device) # init tracker | |
elif end_frame >= f > start_frame: # tracking | |
state = siamese_track(state, im, mask_enable, refine_enable, device=device) # track | |
mask = state['mask'] | |
toc += cv2.getTickCount() - tic | |
if end_frame >= f >= start_frame: | |
pred_masks[obj_id, f, :, :] = mask | |
toc /= cv2.getTickFrequency() | |
if len(annos) == len(image_files): | |
multi_mean_iou = MultiBatchIouMeter(thrs, pred_masks, annos, | |
start=video['start_frame'] if 'start_frame' in video else None, | |
end=video['end_frame'] if 'end_frame' in video else None) | |
for i in range(object_num): | |
for j, thr in enumerate(thrs): | |
logger.info('Fusion Multi Object{:20s} IOU at {:.2f}: {:.4f}'.format(video['name'] + '_' + str(i + 1), thr, | |
multi_mean_iou[i, j])) | |
else: | |
multi_mean_iou = [] | |
if args.save_mask: | |
video_path = join('test', args.dataset, 'SiamMask', video['name']) | |
if not isdir(video_path): makedirs(video_path) | |
pred_mask_final = np.array(pred_masks) | |
pred_mask_final = (np.argmax(pred_mask_final, axis=0).astype('uint8') + 1) * ( | |
np.max(pred_mask_final, axis=0) > state['p'].seg_thr).astype('uint8') | |
for i in range(pred_mask_final.shape[0]): | |
cv2.imwrite(join(video_path, image_files[i].split('/')[-1].split('.')[0] + '.png'), pred_mask_final[i].astype(np.uint8)) | |
if args.visualization: | |
pred_mask_final = np.array(pred_masks) | |
pred_mask_final = (np.argmax(pred_mask_final, axis=0).astype('uint8') + 1) * ( | |
np.max(pred_mask_final, axis=0) > state['p'].seg_thr).astype('uint8') | |
COLORS = np.random.randint(128, 255, size=(object_num, 3), dtype="uint8") | |
COLORS = np.vstack([[0, 0, 0], COLORS]).astype("uint8") | |
mask = COLORS[pred_mask_final] | |
for f, image_file in enumerate(image_files): | |
output = ((0.4 * cv2.imread(image_file)) + (0.6 * mask[f,:,:,:])).astype("uint8") | |
cv2.imshow("mask", output) | |
cv2.waitKey(1) | |
logger.info('({:d}) Video: {:12s} Time: {:02.1f}s Speed: {:3.1f}fps'.format( | |
v_id, video['name'], toc, f*len(object_ids) / toc)) | |
return multi_mean_iou, f*len(object_ids) / toc | |
def main(): | |
global args, logger, v_id | |
args = parser.parse_args() | |
cfg = load_config(args) | |
init_log('global', logging.INFO) | |
if args.log != "": | |
add_file_handler('global', args.log, logging.INFO) | |
logger = logging.getLogger('global') | |
logger.info(args) | |
# setup model | |
if args.arch == 'Custom': | |
from custom import Custom | |
model = Custom(anchors=cfg['anchors']) | |
else: | |
parser.error('invalid architecture: {}'.format(args.arch)) | |
if args.resume: | |
assert isfile(args.resume), '{} is not a valid file'.format(args.resume) | |
model = load_pretrain(model, args.resume) | |
model.eval() | |
device = torch.device('cuda' if (torch.cuda.is_available() and not args.cpu) else 'cpu') | |
model = model.to(device) | |
# setup dataset | |
dataset = load_dataset(args.dataset) | |
# VOS or VOT? | |
if args.dataset in ['DAVIS2016', 'DAVIS2017', 'ytb_vos'] and args.mask: | |
vos_enable = True # enable Mask output | |
else: | |
vos_enable = False | |
total_lost = 0 # VOT | |
iou_lists = [] # VOS | |
speed_list = [] | |
for v_id, video in enumerate(dataset.keys(), start=1): | |
if args.video != '' and video != args.video: | |
continue | |
if vos_enable: | |
iou_list, speed = track_vos(model, dataset[video], cfg['hp'] if 'hp' in cfg.keys() else None, | |
args.mask, args.refine, args.dataset in ['DAVIS2017', 'ytb_vos'], device=device) | |
iou_lists.append(iou_list) | |
else: | |
lost, speed = track_vot(model, dataset[video], cfg['hp'] if 'hp' in cfg.keys() else None, | |
args.mask, args.refine, device=device) | |
total_lost += lost | |
speed_list.append(speed) | |
# report final result | |
if vos_enable: | |
for thr, iou in zip(thrs, np.mean(np.concatenate(iou_lists), axis=0)): | |
logger.info('Segmentation Threshold {:.2f} mIoU: {:.3f}'.format(thr, iou)) | |
else: | |
logger.info('Total Lost: {:d}'.format(total_lost)) | |
logger.info('Mean Speed: {:.2f} FPS'.format(np.mean(speed_list))) | |
if __name__ == '__main__': | |
main() | |