Spaces:
Running
on
T4
Running
on
T4
# -------------------------------------------------------- | |
# Python Single Object Tracking Evaluation | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Fangyi Zhang | |
# @author fangyi.zhang@vipl.ict.ac.cn | |
# @project https://github.com/StrangerZhang/pysot-toolkit.git | |
# Revised for SiamMask by foolwood | |
# -------------------------------------------------------- | |
import argparse | |
import glob | |
from os.path import join, realpath, dirname | |
from tqdm import tqdm | |
from multiprocessing import Pool | |
from utils.pysot.datasets import VOTDataset | |
from utils.pysot.evaluation import AccuracyRobustnessBenchmark, EAOBenchmark | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='VOT Evaluation') | |
parser.add_argument('--dataset', type=str, help='dataset name') | |
parser.add_argument('--result_dir', type=str, help='tracker result root') | |
parser.add_argument('--tracker_prefix', type=str, help='tracker prefix') | |
parser.add_argument('--show_video_level', action='store_true') | |
parser.add_argument('--num', type=int, help='number of processes to eval', default=1) | |
args = parser.parse_args() | |
root = join(realpath(dirname(__file__)), '../data') | |
tracker_dir = args.result_dir | |
trackers = glob.glob(join(tracker_dir, args.tracker_prefix+'*')) | |
trackers = [t.split('/')[-1] for t in trackers] | |
assert len(trackers) > 0 | |
args.num = min(args.num, len(trackers)) | |
if args.dataset in ['VOT2016', 'VOT2018', 'VOT2019']: | |
dataset = VOTDataset(args.dataset, root) | |
dataset.set_tracker(tracker_dir, trackers) | |
ar_benchmark = AccuracyRobustnessBenchmark(dataset) | |
ar_result = {} | |
with Pool(processes=args.num) as pool: | |
for ret in tqdm(pool.imap_unordered(ar_benchmark.eval, | |
trackers), desc='eval ar', total=len(trackers), ncols=100): | |
ar_result.update(ret) | |
benchmark = EAOBenchmark(dataset) | |
eao_result = {} | |
with Pool(processes=args.num) as pool: | |
for ret in tqdm(pool.imap_unordered(benchmark.eval, | |
trackers), desc='eval eao', total=len(trackers), ncols=100): | |
eao_result.update(ret) | |
ar_benchmark.show_result(ar_result, eao_result, show_video_level=args.show_video_level) | |