Spaces:
Running
on
T4
Running
on
T4
# -------------------------------------------------------- | |
# SiamMask | |
# Licensed under The MIT License | |
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn) | |
# -------------------------------------------------------- | |
import numpy as np | |
import math | |
from SiamMask.utils.bbox_helper import center2corner, corner2center | |
class Anchors: | |
def __init__(self, cfg): | |
self.stride = 8 | |
self.ratios = [0.33, 0.5, 1, 2, 3] | |
self.scales = [8] | |
self.round_dight = 0 | |
self.image_center = 0 | |
self.size = 0 | |
self.anchor_density = 1 | |
self.__dict__.update(cfg) | |
self.anchor_num = len(self.scales) * len(self.ratios) * (self.anchor_density**2) | |
self.anchors = None # in single position (anchor_num*4) | |
self.all_anchors = None # in all position 2*(4*anchor_num*h*w) | |
self.generate_anchors() | |
def generate_anchors(self): | |
self.anchors = np.zeros((self.anchor_num, 4), dtype=np.float32) | |
size = self.stride * self.stride | |
count = 0 | |
anchors_offset = self.stride / self.anchor_density | |
anchors_offset = np.arange(self.anchor_density)*anchors_offset | |
anchors_offset = anchors_offset - np.mean(anchors_offset) | |
x_offsets, y_offsets = np.meshgrid(anchors_offset, anchors_offset) | |
for x_offset, y_offset in zip(x_offsets.flatten(), y_offsets.flatten()): | |
for r in self.ratios: | |
if self.round_dight > 0: | |
ws = round(math.sqrt(size*1. / r), self.round_dight) | |
hs = round(ws * r, self.round_dight) | |
else: | |
ws = int(math.sqrt(size*1. / r)) | |
hs = int(ws * r) | |
for s in self.scales: | |
w = ws * s | |
h = hs * s | |
self.anchors[count][:] = [-w*0.5+x_offset, -h*0.5+y_offset, w*0.5+x_offset, h*0.5+y_offset][:] | |
count += 1 | |
def generate_all_anchors(self, im_c, size): | |
if self.image_center == im_c and self.size == size: | |
return False | |
self.image_center = im_c | |
self.size = size | |
a0x = im_c - size // 2 * self.stride | |
ori = np.array([a0x] * 4, dtype=np.float32) | |
zero_anchors = self.anchors + ori | |
x1 = zero_anchors[:, 0] | |
y1 = zero_anchors[:, 1] | |
x2 = zero_anchors[:, 2] | |
y2 = zero_anchors[:, 3] | |
x1, y1, x2, y2 = map(lambda x: x.reshape(self.anchor_num, 1, 1), [x1, y1, x2, y2]) | |
cx, cy, w, h = corner2center([x1, y1, x2, y2]) | |
disp_x = np.arange(0, size).reshape(1, 1, -1) * self.stride | |
disp_y = np.arange(0, size).reshape(1, -1, 1) * self.stride | |
cx = cx + disp_x | |
cy = cy + disp_y | |
# broadcast | |
zero = np.zeros((self.anchor_num, size, size), dtype=np.float32) | |
cx, cy, w, h = map(lambda x: x + zero, [cx, cy, w, h]) | |
x1, y1, x2, y2 = center2corner([cx, cy, w, h]) | |
self.all_anchors = np.stack([x1, y1, x2, y2]), np.stack([cx, cy, w, h]) | |
return True | |
# if __name__ == '__main__': | |
# anchors = Anchors(cfg={'stride':16, 'anchor_density': 2}) | |
# anchors.generate_all_anchors(im_c=255//2, size=(255-127)//16+1+8) | |
# a = 1 | |