oguzakif's picture
custom.py import changed
6101b7d
raw
history blame
7.26 kB
from SiamMask.models.siammask_sharp import SiamMask
from SiamMask.models.features import MultiStageFeature
from SiamMask.models.rpn import RPN, DepthCorr
from SiamMask.models.mask import Mask
import torch
import torch.nn as nn
import torch.nn.functional as F
from SiamMask.utils.load_helper import load_pretrain
from SiamMask.experiments.siammask_sharp.resnet import resnet50
class ResDownS(nn.Module):
def __init__(self, inplane, outplane):
super(ResDownS, self).__init__()
self.downsample = nn.Sequential(
nn.Conv2d(inplane, outplane, kernel_size=1, bias=False),
nn.BatchNorm2d(outplane))
def forward(self, x):
x = self.downsample(x)
if x.size(3) < 20:
l = 4
r = -4
x = x[:, :, l:r, l:r]
return x
class ResDown(MultiStageFeature):
def __init__(self, pretrain=False):
super(ResDown, self).__init__()
self.features = resnet50(layer3=True, layer4=False)
if pretrain:
load_pretrain(self.features, 'resnet.model')
self.downsample = ResDownS(1024, 256)
self.layers = [self.downsample, self.features.layer2, self.features.layer3]
self.train_nums = [1, 3]
self.change_point = [0, 0.5]
self.unfix(0.0)
def param_groups(self, start_lr, feature_mult=1):
lr = start_lr * feature_mult
def _params(module, mult=1):
params = list(filter(lambda x:x.requires_grad, module.parameters()))
if len(params):
return [{'params': params, 'lr': lr * mult}]
else:
return []
groups = []
groups += _params(self.downsample)
groups += _params(self.features, 0.1)
return groups
def forward(self, x):
output = self.features(x)
p3 = self.downsample(output[-1])
return p3
def forward_all(self, x):
output = self.features(x)
p3 = self.downsample(output[-1])
return output, p3
class UP(RPN):
def __init__(self, anchor_num=5, feature_in=256, feature_out=256):
super(UP, self).__init__()
self.anchor_num = anchor_num
self.feature_in = feature_in
self.feature_out = feature_out
self.cls_output = 2 * self.anchor_num
self.loc_output = 4 * self.anchor_num
self.cls = DepthCorr(feature_in, feature_out, self.cls_output)
self.loc = DepthCorr(feature_in, feature_out, self.loc_output)
def forward(self, z_f, x_f):
cls = self.cls(z_f, x_f)
loc = self.loc(z_f, x_f)
return cls, loc
class MaskCorr(Mask):
def __init__(self, oSz=63):
super(MaskCorr, self).__init__()
self.oSz = oSz
self.mask = DepthCorr(256, 256, self.oSz**2)
def forward(self, z, x):
return self.mask(z, x)
class Refine(nn.Module):
def __init__(self):
super(Refine, self).__init__()
self.v0 = nn.Sequential(nn.Conv2d(64, 16, 3, padding=1), nn.ReLU(),
nn.Conv2d(16, 4, 3, padding=1),nn.ReLU())
self.v1 = nn.Sequential(nn.Conv2d(256, 64, 3, padding=1), nn.ReLU(),
nn.Conv2d(64, 16, 3, padding=1), nn.ReLU())
self.v2 = nn.Sequential(nn.Conv2d(512, 128, 3, padding=1), nn.ReLU(),
nn.Conv2d(128, 32, 3, padding=1), nn.ReLU())
self.h2 = nn.Sequential(nn.Conv2d(32, 32, 3, padding=1), nn.ReLU(),
nn.Conv2d(32, 32, 3, padding=1), nn.ReLU())
self.h1 = nn.Sequential(nn.Conv2d(16, 16, 3, padding=1), nn.ReLU(),
nn.Conv2d(16, 16, 3, padding=1), nn.ReLU())
self.h0 = nn.Sequential(nn.Conv2d(4, 4, 3, padding=1), nn.ReLU(),
nn.Conv2d(4, 4, 3, padding=1), nn.ReLU())
self.deconv = nn.ConvTranspose2d(256, 32, 15, 15)
self.post0 = nn.Conv2d(32, 16, 3, padding=1)
self.post1 = nn.Conv2d(16, 4, 3, padding=1)
self.post2 = nn.Conv2d(4, 1, 3, padding=1)
for modules in [self.v0, self.v1, self.v2, self.h2, self.h1, self.h0, self.deconv, self.post0, self.post1, self.post2,]:
for l in modules.modules():
if isinstance(l, nn.Conv2d):
nn.init.kaiming_uniform_(l.weight, a=1)
def forward(self, f, corr_feature, pos=None, test=False):
if test:
p0 = torch.nn.functional.pad(f[0], [16, 16, 16, 16])[:, :, 4*pos[0]:4*pos[0]+61, 4*pos[1]:4*pos[1]+61]
p1 = torch.nn.functional.pad(f[1], [8, 8, 8, 8])[:, :, 2 * pos[0]:2 * pos[0] + 31, 2 * pos[1]:2 * pos[1] + 31]
p2 = torch.nn.functional.pad(f[2], [4, 4, 4, 4])[:, :, pos[0]:pos[0] + 15, pos[1]:pos[1] + 15]
else:
p0 = F.unfold(f[0], (61, 61), padding=0, stride=4).permute(0, 2, 1).contiguous().view(-1, 64, 61, 61)
if not (pos is None): p0 = torch.index_select(p0, 0, pos)
p1 = F.unfold(f[1], (31, 31), padding=0, stride=2).permute(0, 2, 1).contiguous().view(-1, 256, 31, 31)
if not (pos is None): p1 = torch.index_select(p1, 0, pos)
p2 = F.unfold(f[2], (15, 15), padding=0, stride=1).permute(0, 2, 1).contiguous().view(-1, 512, 15, 15)
if not (pos is None): p2 = torch.index_select(p2, 0, pos)
if not(pos is None):
p3 = corr_feature[:, :, pos[0], pos[1]].view(-1, 256, 1, 1)
else:
p3 = corr_feature.permute(0, 2, 3, 1).contiguous().view(-1, 256, 1, 1)
out = self.deconv(p3)
out = self.post0(F.upsample(self.h2(out) + self.v2(p2), size=(31, 31)))
out = self.post1(F.upsample(self.h1(out) + self.v1(p1), size=(61, 61)))
out = self.post2(F.upsample(self.h0(out) + self.v0(p0), size=(127, 127)))
out = out.view(-1, 127*127)
return out
def param_groups(self, start_lr, feature_mult=1):
params = filter(lambda x:x.requires_grad, self.parameters())
params = [{'params': params, 'lr': start_lr * feature_mult}]
return params
class Custom(SiamMask):
def __init__(self, pretrain=False, **kwargs):
super(Custom, self).__init__(**kwargs)
self.features = ResDown(pretrain=pretrain)
self.rpn_model = UP(anchor_num=self.anchor_num, feature_in=256, feature_out=256)
self.mask_model = MaskCorr()
self.refine_model = Refine()
def refine(self, f, pos=None):
return self.refine_model(f, pos)
def template(self, template):
self.zf = self.features(template)
def track(self, search):
search = self.features(search)
rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, search)
return rpn_pred_cls, rpn_pred_loc
def track_mask(self, search):
self.feature, self.search = self.features.forward_all(search)
rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, self.search)
self.corr_feature = self.mask_model.mask.forward_corr(self.zf, self.search)
pred_mask = self.mask_model.mask.head(self.corr_feature)
return rpn_pred_cls, rpn_pred_loc, pred_mask
def track_refine(self, pos):
pred_mask = self.refine_model(self.feature, self.corr_feature, pos=pos, test=True)
return pred_mask