Spaces:
Sleeping
Sleeping
from SiamMask.models.siammask_sharp import SiamMask | |
from SiamMask.models.features import MultiStageFeature | |
from SiamMask.models.rpn import RPN, DepthCorr | |
from SiamMask.models.mask import Mask | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from SiamMask.utils.load_helper import load_pretrain | |
from SiamMask.experiments.siammask_sharp.resnet import resnet50 | |
class ResDownS(nn.Module): | |
def __init__(self, inplane, outplane): | |
super(ResDownS, self).__init__() | |
self.downsample = nn.Sequential( | |
nn.Conv2d(inplane, outplane, kernel_size=1, bias=False), | |
nn.BatchNorm2d(outplane)) | |
def forward(self, x): | |
x = self.downsample(x) | |
if x.size(3) < 20: | |
l = 4 | |
r = -4 | |
x = x[:, :, l:r, l:r] | |
return x | |
class ResDown(MultiStageFeature): | |
def __init__(self, pretrain=False): | |
super(ResDown, self).__init__() | |
self.features = resnet50(layer3=True, layer4=False) | |
if pretrain: | |
load_pretrain(self.features, 'resnet.model') | |
self.downsample = ResDownS(1024, 256) | |
self.layers = [self.downsample, self.features.layer2, self.features.layer3] | |
self.train_nums = [1, 3] | |
self.change_point = [0, 0.5] | |
self.unfix(0.0) | |
def param_groups(self, start_lr, feature_mult=1): | |
lr = start_lr * feature_mult | |
def _params(module, mult=1): | |
params = list(filter(lambda x:x.requires_grad, module.parameters())) | |
if len(params): | |
return [{'params': params, 'lr': lr * mult}] | |
else: | |
return [] | |
groups = [] | |
groups += _params(self.downsample) | |
groups += _params(self.features, 0.1) | |
return groups | |
def forward(self, x): | |
output = self.features(x) | |
p3 = self.downsample(output[-1]) | |
return p3 | |
def forward_all(self, x): | |
output = self.features(x) | |
p3 = self.downsample(output[-1]) | |
return output, p3 | |
class UP(RPN): | |
def __init__(self, anchor_num=5, feature_in=256, feature_out=256): | |
super(UP, self).__init__() | |
self.anchor_num = anchor_num | |
self.feature_in = feature_in | |
self.feature_out = feature_out | |
self.cls_output = 2 * self.anchor_num | |
self.loc_output = 4 * self.anchor_num | |
self.cls = DepthCorr(feature_in, feature_out, self.cls_output) | |
self.loc = DepthCorr(feature_in, feature_out, self.loc_output) | |
def forward(self, z_f, x_f): | |
cls = self.cls(z_f, x_f) | |
loc = self.loc(z_f, x_f) | |
return cls, loc | |
class MaskCorr(Mask): | |
def __init__(self, oSz=63): | |
super(MaskCorr, self).__init__() | |
self.oSz = oSz | |
self.mask = DepthCorr(256, 256, self.oSz**2) | |
def forward(self, z, x): | |
return self.mask(z, x) | |
class Refine(nn.Module): | |
def __init__(self): | |
super(Refine, self).__init__() | |
self.v0 = nn.Sequential(nn.Conv2d(64, 16, 3, padding=1), nn.ReLU(), | |
nn.Conv2d(16, 4, 3, padding=1),nn.ReLU()) | |
self.v1 = nn.Sequential(nn.Conv2d(256, 64, 3, padding=1), nn.ReLU(), | |
nn.Conv2d(64, 16, 3, padding=1), nn.ReLU()) | |
self.v2 = nn.Sequential(nn.Conv2d(512, 128, 3, padding=1), nn.ReLU(), | |
nn.Conv2d(128, 32, 3, padding=1), nn.ReLU()) | |
self.h2 = nn.Sequential(nn.Conv2d(32, 32, 3, padding=1), nn.ReLU(), | |
nn.Conv2d(32, 32, 3, padding=1), nn.ReLU()) | |
self.h1 = nn.Sequential(nn.Conv2d(16, 16, 3, padding=1), nn.ReLU(), | |
nn.Conv2d(16, 16, 3, padding=1), nn.ReLU()) | |
self.h0 = nn.Sequential(nn.Conv2d(4, 4, 3, padding=1), nn.ReLU(), | |
nn.Conv2d(4, 4, 3, padding=1), nn.ReLU()) | |
self.deconv = nn.ConvTranspose2d(256, 32, 15, 15) | |
self.post0 = nn.Conv2d(32, 16, 3, padding=1) | |
self.post1 = nn.Conv2d(16, 4, 3, padding=1) | |
self.post2 = nn.Conv2d(4, 1, 3, padding=1) | |
for modules in [self.v0, self.v1, self.v2, self.h2, self.h1, self.h0, self.deconv, self.post0, self.post1, self.post2,]: | |
for l in modules.modules(): | |
if isinstance(l, nn.Conv2d): | |
nn.init.kaiming_uniform_(l.weight, a=1) | |
def forward(self, f, corr_feature, pos=None, test=False): | |
if test: | |
p0 = torch.nn.functional.pad(f[0], [16, 16, 16, 16])[:, :, 4*pos[0]:4*pos[0]+61, 4*pos[1]:4*pos[1]+61] | |
p1 = torch.nn.functional.pad(f[1], [8, 8, 8, 8])[:, :, 2 * pos[0]:2 * pos[0] + 31, 2 * pos[1]:2 * pos[1] + 31] | |
p2 = torch.nn.functional.pad(f[2], [4, 4, 4, 4])[:, :, pos[0]:pos[0] + 15, pos[1]:pos[1] + 15] | |
else: | |
p0 = F.unfold(f[0], (61, 61), padding=0, stride=4).permute(0, 2, 1).contiguous().view(-1, 64, 61, 61) | |
if not (pos is None): p0 = torch.index_select(p0, 0, pos) | |
p1 = F.unfold(f[1], (31, 31), padding=0, stride=2).permute(0, 2, 1).contiguous().view(-1, 256, 31, 31) | |
if not (pos is None): p1 = torch.index_select(p1, 0, pos) | |
p2 = F.unfold(f[2], (15, 15), padding=0, stride=1).permute(0, 2, 1).contiguous().view(-1, 512, 15, 15) | |
if not (pos is None): p2 = torch.index_select(p2, 0, pos) | |
if not(pos is None): | |
p3 = corr_feature[:, :, pos[0], pos[1]].view(-1, 256, 1, 1) | |
else: | |
p3 = corr_feature.permute(0, 2, 3, 1).contiguous().view(-1, 256, 1, 1) | |
out = self.deconv(p3) | |
out = self.post0(F.upsample(self.h2(out) + self.v2(p2), size=(31, 31))) | |
out = self.post1(F.upsample(self.h1(out) + self.v1(p1), size=(61, 61))) | |
out = self.post2(F.upsample(self.h0(out) + self.v0(p0), size=(127, 127))) | |
out = out.view(-1, 127*127) | |
return out | |
def param_groups(self, start_lr, feature_mult=1): | |
params = filter(lambda x:x.requires_grad, self.parameters()) | |
params = [{'params': params, 'lr': start_lr * feature_mult}] | |
return params | |
class Custom(SiamMask): | |
def __init__(self, pretrain=False, **kwargs): | |
super(Custom, self).__init__(**kwargs) | |
self.features = ResDown(pretrain=pretrain) | |
self.rpn_model = UP(anchor_num=self.anchor_num, feature_in=256, feature_out=256) | |
self.mask_model = MaskCorr() | |
self.refine_model = Refine() | |
def refine(self, f, pos=None): | |
return self.refine_model(f, pos) | |
def template(self, template): | |
self.zf = self.features(template) | |
def track(self, search): | |
search = self.features(search) | |
rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, search) | |
return rpn_pred_cls, rpn_pred_loc | |
def track_mask(self, search): | |
self.feature, self.search = self.features.forward_all(search) | |
rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, self.search) | |
self.corr_feature = self.mask_model.mask.forward_corr(self.zf, self.search) | |
pred_mask = self.mask_model.mask.head(self.corr_feature) | |
return rpn_pred_cls, rpn_pred_loc, pred_mask | |
def track_refine(self, pos): | |
pred_mask = self.refine_model(self.feature, self.corr_feature, pos=pos, test=True) | |
return pred_mask | |