Spaces:
Sleeping
Sleeping
from trainer import Trainer | |
from importlib import import_module | |
import math | |
import torch | |
from torch import optim | |
from torch.optim import lr_scheduler | |
import numpy as np | |
import os | |
from shutil import copyfile | |
import glob | |
from models.utils.flow_losses import smoothness_loss, second_order_loss | |
from models.utils.fbConsistencyCheck import image_warp | |
from models.utils.fbConsistencyCheck import ternary_loss2 | |
import torch.nn.functional as F | |
import cv2 | |
import cvbase | |
from data.util.flow_utils import region_fill as rf | |
import imageio | |
import torch.nn as nn | |
from skimage.feature import canny | |
from skimage.metrics import peak_signal_noise_ratio as psnr | |
from skimage.metrics import structural_similarity as ssim | |
from models.utils.bce_edge_loss import edgeLoss, EdgeAcc | |
class Network(Trainer): | |
def init_model(self): | |
self.edgeMeasure = EdgeAcc() | |
model_package = import_module('models.{}'.format(self.opt['model'])) | |
model = model_package.Model(self.opt) | |
optimizer = optim.Adam(model.parameters(), lr=float(self.opt['train']['lr']), | |
betas=(float(self.opt['train']['BETA1']), float(float(self.opt['train']['BETA2'])))) | |
if self.rank <= 0: | |
self.logger.info( | |
'Optimizer is Adam, BETA1: {}, BETA2: {}'.format(float(self.opt['train']['BETA1']), | |
float(self.opt['train']['BETA2']))) | |
step_size = int(math.ceil(self.opt['train']['UPDATE_INTERVAL'] / self.trainSize)) | |
if self.rank <= 0: | |
self.logger.info('Step size for optimizer is {} epoch'.format(step_size)) | |
scheduler = lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=self.opt['train']['lr_decay']) | |
return model, optimizer, scheduler | |
def resume_training(self): | |
gen_state = torch.load(self.opt['path']['gen_state'], | |
map_location=lambda storage, loc: storage.cuda(self.opt['device'])) | |
opt_state = torch.load(self.opt['path']['opt_state'], | |
map_location=lambda storage, loc: storage.cuda(self.opt['device'])) | |
if self.rank <= 0: | |
self.logger.info('Resume state is activated') | |
self.logger.info('Resume training from epoch: {}, iter: {}'.format( | |
opt_state['epoch'], opt_state['iteration'] | |
)) | |
if self.opt['finetune'] == False: | |
start_epoch = opt_state['epoch'] | |
current_step = opt_state['iteration'] | |
self.optimizer.load_state_dict(opt_state['optimizer_state_dict']) | |
self.scheduler.load_state_dict(opt_state['scheduler_state_dict']) | |
else: | |
start_epoch = 0 | |
current_step = 0 | |
self.model.load_state_dict(gen_state['model_state_dict']) | |
if self.rank <= 0: | |
self.logger.info('Resume training mode, optimizer, scheduler and model have been uploaded') | |
return start_epoch, current_step | |
def _trainEpoch(self, epoch): | |
for idx, train_data in enumerate(self.trainLoader): | |
self.currentStep += 1 | |
if self.currentStep > self.totalIterations: | |
if self.rank <= 0: | |
self.logger.info('Train process has been finished') | |
break | |
if self.opt['train']['WARMUP'] is not None and self.currentStep <= self.opt['train']['WARMUP'] // self.opt[ | |
'world_size']: | |
target_lr = self.opt['train']['lr'] * self.currentStep / ( | |
self.opt['train']['WARMUP']) | |
self.adjust_learning_rate(self.optimizer, target_lr) | |
flows = train_data['flows'] | |
diffused_flows = train_data['diffused_flows'] | |
target_edge = train_data['edges'] | |
current_frame = train_data['current_frame'] | |
current_frame = current_frame.to(self.opt['device']) | |
shift_frame = train_data['shift_frame'] | |
shift_frame = shift_frame.to(self.opt['device']) | |
masks = train_data['masks'] | |
flows = flows.to(self.opt['device']) | |
masks = masks.to(self.opt['device']) | |
diffused_flows = diffused_flows.to(self.opt['device']) | |
target_edge = target_edge.to(self.opt['device']) | |
if len(masks.shape) == 5: | |
b, c, t, h, w = masks.shape | |
target_flow = flows[:, :, t // 2] | |
target_mask = masks[:, :, t // 2] | |
else: | |
assert len(masks.shape) == 4 and len(flows.shape) == 4 | |
target_flow = flows | |
target_mask = masks | |
filled_flow = self.model(diffused_flows, masks) | |
filled_flow, filled_edge = filled_flow | |
combined_flow = target_flow * (1 - target_mask) + filled_flow * target_mask | |
combined_edge = target_edge * (1 - target_mask) + filled_edge * target_mask | |
edge_loss = (edgeLoss(filled_edge, target_edge) + 5 * edgeLoss(combined_edge, target_edge)) | |
# loss calculations | |
L1Loss_masked = self.maskedLoss(combined_flow * target_mask, | |
target_flow * target_mask) / torch.mean(target_mask) | |
L1Loss_valid = self.validLoss(filled_flow * (1 - target_mask), | |
target_flow * (1 - target_mask)) / torch.mean(1 - target_mask) | |
smoothLoss = smoothness_loss(combined_flow, target_mask) | |
smoothLoss2 = second_order_loss(combined_flow, target_mask) | |
ternary_loss = self.ternary_loss(combined_flow, target_flow, target_mask, current_frame, shift_frame, | |
scale_factor=1) | |
m_losses = (L1Loss_masked + L1Loss_valid) * self.opt['L1M'] | |
sm1_loss = smoothLoss * self.opt['sm'] | |
sm2_loss = smoothLoss2 * self.opt['sm2'] | |
t_loss = self.opt['ternary'] * ternary_loss | |
e_loss = edge_loss * self.opt['edge_loss'] | |
loss = m_losses + sm1_loss + sm2_loss + t_loss + e_loss | |
self.optimizer.zero_grad() | |
loss.backward() | |
if self.opt['gc']: # gradient clip | |
nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10, | |
norm_type=2) | |
self.optimizer.step() | |
if self.opt['use_tb_logger'] and self.rank <= 0 and self.currentStep % 8 == 0: | |
print('Mask: {:.03f}, sm: {:.03f}, sm2: {:.03f}, ternary: {:.03f}, edge: {:03f}'.format( | |
m_losses.item(), | |
sm1_loss.item(), | |
sm2_loss.item(), | |
t_loss.item(), | |
e_loss.item() | |
)) | |
self.tb_logger.add_scalar('{}/recon'.format('train'), m_losses.item(), | |
self.currentStep) | |
self.tb_logger.add_scalar('{}/sm'.format('train'), sm1_loss.item(), self.currentStep) | |
self.tb_logger.add_scalar('{}/sm2'.format('train'), sm2_loss.item(), | |
self.currentStep) | |
self.tb_logger.add_scalar('{}/ternary'.format('train'), | |
t_loss.item(), | |
self.currentStep) | |
self.tb_logger.add_scalar('{}/edge'.format('train'), e_loss.item(), | |
self.currentStep) | |
if self.currentStep % self.opt['logger']['PRINT_FREQ'] == 0 and self.rank <= 0: | |
compLog = np.array(combined_flow.detach().permute(0, 2, 3, 1).cpu()) | |
flowsLog = np.array(target_flow.detach().permute(0, 2, 3, 1).cpu()) | |
logs = self.calculate_metrics(compLog, flowsLog) | |
prec, recall = self.edgeMeasure(filled_edge.detach(), target_edge.detach()) | |
logs['prec'] = prec | |
logs['recall'] = recall | |
self._printLog(logs, epoch, loss) | |
def ternary_loss(self, comp, flow, mask, current_frame, shift_frame, scale_factor): | |
if scale_factor != 1: | |
current_frame = F.interpolate(current_frame, scale_factor=1 / scale_factor, mode='bilinear') | |
shift_frame = F.interpolate(shift_frame, scale_factor=1 / scale_factor, mode='bilinear') | |
warped_sc = image_warp(shift_frame, flow) | |
noc_mask = torch.exp(-50. * torch.sum(torch.abs(current_frame - warped_sc), dim=1).pow(2)).unsqueeze(1) | |
warped_comp_sc = image_warp(shift_frame, comp) | |
loss = ternary_loss2(current_frame, warped_comp_sc, noc_mask, mask) | |
return loss | |
def calculate_metrics(self, results, gts): | |
B, H, W, C = results.shape | |
psnr_values, ssim_values, L1errors, L2errors = [], [], [], [] | |
for i in range(B): | |
result, gt = results[i], gts[i] | |
result_rgb = cvbase.flow2rgb(result) | |
gt_rgb = cvbase.flow2rgb(gt) | |
psnr_value = psnr(result_rgb, gt_rgb) | |
ssim_value = ssim(result_rgb, gt_rgb, multichannel=True) | |
residual = result - gt | |
L1error = np.mean(np.abs(residual)) | |
L2error = np.sum(residual ** 2) ** 0.5 / (H * W * C) | |
psnr_values.append(psnr_value) | |
ssim_values.append(ssim_value) | |
L1errors.append(L1error) | |
L2errors.append(L2error) | |
psnr_value = np.mean(psnr_values) | |
ssim_value = np.mean(ssim_values) | |
L1_value = np.mean(L1errors) | |
L2_value = np.mean(L2errors) | |
return {'l1': L1_value, 'l2': L2_value, 'psnr': psnr_value, 'ssim': ssim_value} | |
def _printLog(self, logs, epoch, loss): | |
if self.countDown % self.opt['record_iter'] == 0: | |
self.total_psnr = 0 | |
self.total_ssim = 0 | |
self.total_l1 = 0 | |
self.total_l2 = 0 | |
self.total_loss = 0 | |
self.total_prec = 0 | |
self.total_recall = 0 | |
self.countDown = 0 | |
self.countDown += 1 | |
message = '[epoch:{:3d}, iter:{:7d}, lr:('.format(epoch, self.currentStep) | |
for v in self.get_lr(): | |
message += '{:.3e}, '.format(v) | |
message += ')] ' | |
self.total_psnr += logs['psnr'] | |
self.total_ssim += logs['ssim'] | |
self.total_l1 += logs['l1'] | |
self.total_l2 += logs['l2'] | |
self.total_prec += logs['prec'].item() | |
self.total_recall += logs['recall'].item() | |
self.total_loss += loss.item() | |
mean_psnr = self.total_psnr / self.countDown | |
mean_ssim = self.total_ssim / self.countDown | |
mean_l1 = self.total_l1 / self.countDown | |
mean_l2 = self.total_l2 / self.countDown | |
mean_prec = self.total_prec / self.countDown | |
mean_recall = self.total_recall / self.countDown | |
mean_loss = self.total_loss / self.countDown | |
message += '{:s}: {:.4e} '.format('mean_loss', mean_loss) | |
message += '{:s}: {:} '.format('mean_psnr', mean_psnr) | |
message += '{:s}: {:} '.format('mean_ssim', mean_ssim) | |
message += '{:s}: {:} '.format('mean_l1', mean_l1) | |
message += '{:s}: {:} '.format('mean_l2', mean_l2) | |
message += '{:s}: {:} '.format('mean_prec', mean_prec) | |
message += '{:s}: {:} '.format('mean_recall', mean_recall) | |
if self.opt['use_tb_logger']: | |
self.tb_logger.add_scalar('train/mean_psnr', mean_psnr, self.currentStep) | |
self.tb_logger.add_scalar('train/mean_ssim', mean_ssim, self.currentStep) | |
self.tb_logger.add_scalar('train/mean_l1', mean_l1, self.currentStep) | |
self.tb_logger.add_scalar('train/mean_l2', mean_l2, self.currentStep) | |
self.tb_logger.add_scalar('train/mean_loss', mean_loss, self.currentStep) | |
self.tb_logger.add_scalar('train/mean_prec', mean_prec, self.currentStep) | |
self.tb_logger.add_scalar('train/mean_recall', mean_recall, self.currentStep) | |
self.logger.info(message) | |
if self.currentStep % self.opt['logger']['SAVE_CHECKPOINT_FREQ'] == 0: | |
self.save_checkpoint(epoch, 'l1', logs['l1']) | |
def save_checkpoint(self, epoch, metric, number): | |
if isinstance(self.model, torch.nn.DataParallel) or isinstance(self.model, | |
torch.nn.parallel.DistributedDataParallel): | |
model_state = self.model.module.state_dict() | |
else: | |
model_state = self.model.state_dict() | |
gen_state = { | |
'model_state_dict': model_state | |
} | |
opt_state = { | |
'epoch': epoch, | |
'iteration': self.currentStep, | |
'optimizer_state_dict': self.optimizer.state_dict(), | |
'scheduler_state_dict': self.scheduler.state_dict(), | |
} | |
gen_name = os.path.join(self.opt['path']['TRAINING_STATE'], | |
'gen_{}_{}.pth.tar'.format(epoch, self.currentStep)) | |
opt_name = os.path.join(self.opt['path']['TRAINING_STATE'], | |
'opt_{}_{}.pth.tar'.format(epoch, self.currentStep)) | |
torch.save(gen_state, gen_name) | |
torch.save(opt_state, opt_name) | |
def _validate(self, epoch): | |
data_path = self.valInfo['data_root'] | |
mask_path = self.valInfo['mask_root'] | |
self.model.eval() | |
test_list = os.listdir(data_path) | |
test_list = test_list[:10] # only inference 10 videos | |
width, height = self.valInfo['flow_width'], self.valInfo['flow_height'] | |
flow_interval = self.opt['flow_interval'] # The sampling interval for flow completion | |
psnr, ssim, l1, l2, prec, recall = {}, {}, {}, {}, {}, {} | |
pivot, sequenceLen = 20, self.opt['num_flows'] | |
for i in range(len(test_list)): | |
videoName = test_list[i] | |
if self.rank <= 0: | |
self.logger.info(f'Video {videoName} is being processed') | |
for direction in ['forward_flo', 'backward_flo']: | |
flow_dir = os.path.join(data_path, videoName, direction) | |
mask_dir = os.path.join(mask_path, videoName) | |
flows = self.read_flows(flow_dir, width, height, pivot, sequenceLen, flow_interval) | |
masks = self.read_masks(mask_dir, width, height, pivot, sequenceLen, flow_interval) | |
if flows == [] or masks == []: | |
if self.rank <= 0: | |
print('Video {} doesn\'t have enough {} flows'.format(videoName, direction)) | |
continue | |
if self.rank <= 0: | |
self.logger.info('Flows have been read') | |
diffused_flows = self.diffusion_filling(flows, masks) | |
flows = np.stack(flows, axis=0) | |
masks = np.stack(masks, axis=0) | |
diffused_flows = np.stack(diffused_flows, axis=0) | |
target_flow = flows[self.opt['num_flows'] // 2] | |
target_edge = self.load_edge(target_flow) | |
target_edge = target_edge[:, :, np.newaxis] | |
diffused_flows = torch.from_numpy(np.transpose(diffused_flows, (3, 0, 1, 2))).unsqueeze( | |
0).float() | |
masks = torch.from_numpy(np.transpose(masks, (3, 0, 1, 2))).unsqueeze(0).float() | |
target_flow = torch.from_numpy(np.transpose(target_flow, (2, 0, 1))).unsqueeze( | |
0).float() | |
target_edge = torch.from_numpy(np.transpose(target_edge, (2, 0, 1))).unsqueeze(0).float() | |
diffused_flows = diffused_flows.to(self.opt['device']) | |
masks = masks.to(self.opt['device']) | |
target_flow = target_flow.to(self.opt['device']) | |
target_edge = target_edge.to(self.opt['device']) | |
target_mask = masks[:, :, sequenceLen // 2] | |
if diffused_flows.shape[2] == 1 and len(diffused_flows.shape) == 5: | |
assert masks.shape[2] == 1 | |
diffused_flows = diffused_flows.squeeze(2) | |
masks = masks.squeeze(2) | |
with torch.no_grad(): | |
filled_flow = self.model(diffused_flows, masks, None) | |
filled_flow, filled_edge = filled_flow | |
if len(diffused_flows.shape) == 5: | |
target_diffused_flow = diffused_flows[:, :, sequenceLen // 2] | |
else: | |
target_diffused_flow = diffused_flows | |
combined_flow = target_flow * (1 - target_mask) + filled_flow * target_mask | |
# calculate metrics | |
psnr_avg, ssim_avg, l1_avg, l2_avg = self.metrics_calc(combined_flow, target_flow) | |
prec_avg, recall_avg = self.edgeMeasure(filled_edge, target_edge) | |
psnr[videoName] = psnr_avg | |
ssim[videoName] = ssim_avg | |
l1[videoName] = l1_avg | |
l2[videoName] = l2_avg | |
prec[videoName] = prec_avg.item() | |
recall[videoName] = recall_avg.item() | |
# visualize frames and report the phase performance | |
if self.rank <= 0: | |
if self.opt['use_tb_logger']: | |
self.tb_logger.add_scalar('test/{}/l1'.format(videoName), l1_avg, | |
self.currentStep) | |
self.tb_logger.add_scalar('test/{}/l2'.format(videoName), l2_avg, self.currentStep) | |
self.tb_logger.add_scalar('test/{}/psnr'.format(videoName), psnr_avg, self.currentStep) | |
self.tb_logger.add_scalar('test/{}/ssim'.format(videoName), ssim_avg, self.currentStep) | |
self.tb_logger.add_scalar('test/{}/prec'.format(videoName), prec_avg, self.currentStep) | |
self.tb_logger.add_scalar('test/{}/recall'.format(videoName), recall_avg, self.currentStep) | |
self.vis_flows(combined_flow, target_flow, target_diffused_flow, videoName, | |
epoch) # view the difference between diffused flows and the completed flows | |
mean_psnr = np.mean([psnr[k] for k in psnr.keys()]) | |
mean_ssim = np.mean([ssim[k] for k in ssim.keys()]) | |
mean_l1 = np.mean([l1[k] for k in l1.keys()]) | |
mean_l2 = np.mean([l2[k] for k in l2.keys()]) | |
mean_prec = np.mean([prec[k] for k in prec.keys()]) | |
mean_recall = np.mean([recall[k] for k in recall.keys()]) | |
self.logger.info( | |
'[epoch:{:3d}, vid:{}/{}], mean_l1: {:.4e}, mean_l2: {:.4e}, mean_psnr: {:}, mean_ssim: {:}, prec: {:}, recall: {:}'.format( | |
epoch, i, len(test_list), mean_l1, mean_l2, mean_psnr, mean_ssim, mean_prec, mean_recall)) | |
# give the overall performance | |
if self.rank <= 0: | |
mean_psnr = np.mean([psnr[k] for k in psnr.keys()]) | |
mean_ssim = np.mean([ssim[k] for k in ssim.keys()]) | |
mean_l1 = np.mean([l1[k] for k in l1.keys()]) | |
mean_l2 = np.mean([l2[k] for k in l2.keys()]) | |
mean_prec = np.mean([prec[k] for k in prec.keys()]) | |
mean_recall = np.mean([recall[k] for k in recall.keys()]) | |
self.logger.info( | |
'[epoch:{:3d}], mean_l1: {:.4e} mean_l2: {:.4e} mean_psnr: {:} mean_ssim: {:}, prec: {:}, recall: {:}'.format( | |
epoch, mean_l1, mean_l2, mean_psnr, mean_ssim, mean_prec, mean_recall)) | |
valid_l1 = mean_l1 + 100 | |
self.save_checkpoint(epoch, 'l1', valid_l1) | |
self.model.train() | |
def load_edge(self, flow): | |
flow_rgb = cvbase.flow2rgb(flow) | |
flow_gray = cv2.cvtColor(flow_rgb, cv2.COLOR_RGB2GRAY) | |
return canny(flow_gray, sigma=self.opt['datasets']['dataInfo']['edge']['sigma'], mask=None, | |
low_threshold=self.opt['datasets']['dataInfo']['edge']['low_threshold'], | |
high_threshold=self.opt['datasets']['dataInfo']['edge']['high_threshold']).astype( | |
np.float) | |
def read_flows(self, flow_dir, width, height, pivot, sequenceLen, sample_interval): | |
flow_paths = glob.glob(os.path.join(flow_dir, '*.flo')) | |
flows = [] | |
half_seq = sequenceLen // 2 | |
for i in range(-half_seq, half_seq + 1): | |
index = pivot + sample_interval * i | |
if index < 0: | |
index = 0 | |
if index >= len(flow_paths): | |
index = len(flow_paths) - 1 | |
flow_path = os.path.join(flow_dir, '{:05d}.flo'.format(index)) | |
flow = cvbase.read_flow(flow_path) | |
pre_height, pre_width = flow.shape[:2] | |
flow = cv2.resize(flow, (width, height), cv2.INTER_LINEAR) | |
flow[:, :, 0] = flow[:, :, 0] / pre_width * width | |
flow[:, :, 1] = flow[:, :, 1] / pre_height * height | |
flows.append(flow) | |
return flows | |
def metrics_calc(self, result, frames): | |
psnr_avg, ssim_avg, l1_avg, l2_avg = 0, 0, 0, 0 | |
result = np.array(result.permute(0, 2, 3, 1).cpu()) # [b, h, w, c] | |
gt = np.array(frames.permute(0, 2, 3, 1).cpu()) # [b, h, w, c] | |
logs = self.calculate_metrics(result, gt) | |
psnr_avg += logs['psnr'] | |
ssim_avg += logs['ssim'] | |
l1_avg += logs['l1'] | |
l2_avg += logs['l2'] | |
return psnr_avg, ssim_avg, l1_avg, l2_avg | |
def read_frames(self, frame_dir, width, height, pivot, sequenceLen): | |
frame_paths = sorted(glob.glob(os.path.join(frame_dir, '*.jpg'))) | |
frames = [] | |
if len(frame_paths) <= 30: | |
return frames | |
for i in range(pivot, pivot + sequenceLen): | |
frame_path = os.path.join(frame_dir, '{:05d}.jpg'.format(i)) | |
frame = imageio.imread(frame_path) | |
frame = cv2.resize(frame, (width, height), cv2.INTER_LINEAR) | |
frames.append(frame) | |
return frames | |
def load_edges(self, frames, width, height): | |
edges = [] | |
for i in range(len(frames)): | |
frame = frames[i] | |
frame_gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) | |
edge = canny(frame_gray, sigma=self.valInfo['sigma'], mask=None, | |
low_threshold=self.valInfo['low_threshold'], | |
high_threshold=self.valInfo['high_threshold']).astype(np.float) # [h, w, 1] | |
edge_t = self.to_tensor(edge, width, height, mode='nearest') | |
edges.append(edge_t) | |
return edges | |
def to_tensor(self, frame, width, height, mode='bilinear'): | |
if len(frame.shape) == 2: | |
frame = frame[:, :, np.newaxis] | |
frame_t = torch.from_numpy(frame).unsqueeze(0).permute(0, 3, 1, 2).float() # [b, c, h, w] | |
if width != 0 and height != 0: | |
frame_t = F.interpolate(frame_t, size=(height, width), mode=mode) | |
return frame_t | |
def to_numpy(self, tensor): | |
tensor = tensor.cpu() | |
tensor = tensor[0] | |
array = np.array(tensor.permute(1, 2, 0)) | |
return array | |
def read_masks(self, mask_dir, width, height, pivot, sequenceLen, sample_interval): | |
mask_path = sorted(glob.glob(os.path.join(mask_dir, '*.png'))) | |
masks = [] | |
half_seq = sequenceLen // 2 | |
for i in range(-half_seq, half_seq + 1): | |
index = pivot + i * sample_interval | |
if index < 0: | |
index = 0 | |
if index >= len(mask_path): | |
index = len(mask_path) - 1 | |
mask = cv2.imread(mask_path[index], 0) | |
mask = mask / 255. | |
mask = cv2.resize(mask, (width, height), cv2.INTER_NEAREST) | |
mask[mask > 0] = 1 | |
if len(mask.shape) == 2: | |
mask = mask[:, :, np.newaxis] | |
assert len(mask.shape) == 3, 'Invalid mask shape: {}'.format(mask.shape) | |
masks.append(mask) | |
return masks | |
def diffusion_filling(self, flows, masks): | |
filled_flows = [] | |
for i in range(len(flows)): | |
flow, mask = flows[i], masks[i][:, :, 0] | |
flow_filled = np.zeros(flow.shape) | |
flow_filled[:, :, 0] = rf.regionfill(flow[:, :, 0], mask) | |
flow_filled[:, :, 1] = rf.regionfill(flow[:, :, 1], mask) | |
filled_flows.append(flow_filled) | |
return filled_flows | |
def vis_flows(self, result, target_flow, diffused_flow, video_name, epoch): | |
""" | |
Vis the filled frames, the GT and the masked frames with the following format | |
| | | | | |
| Ours | GT | diffused_flows | | |
| | | | | |
Args: | |
result: contains generated flow tensors with shape [1, 2, h, w] | |
target_flow: contains GT flow tensors with shape [1, 2, h, w] | |
diffused_flow: contains diffused flow tensor with shape [1, 2, h, w] | |
video_name: video name | |
epoch: epoch | |
Returns: No returns, but will save the flows for every flow | |
""" | |
out_root = self.opt['path']['VAL_IMAGES'] | |
out_dir = os.path.join(out_root, str(epoch), video_name) | |
if not os.path.exists(out_dir): | |
os.makedirs(out_dir) | |
black_column_pixels = 20 | |
result = self.to_numpy(result) | |
target_flow = self.to_numpy(target_flow) | |
diffused_flow = self.to_numpy(diffused_flow) | |
result = cvbase.flow2rgb(result) | |
target_flow = cvbase.flow2rgb(target_flow) | |
diffused_flow = cvbase.flow2rgb(diffused_flow) | |
height, width = result.shape[:2] | |
canvas = np.zeros((height, width * 3 + black_column_pixels * 2, 3)) | |
canvas[:, 0:width, :] = result | |
canvas[:, width + black_column_pixels: 2 * width + black_column_pixels, :] = target_flow | |
canvas[:, 2 * (width + black_column_pixels):, :] = diffused_flow | |
imageio.imwrite(os.path.join(out_dir, 'result_compare.png'), canvas) | |