Spaces:
Running
on
T4
Running
on
T4
from trainer import Trainer | |
from importlib import import_module | |
import math | |
import torch | |
from torch import optim | |
from torch.optim import lr_scheduler | |
import numpy as np | |
from metrics import calculate_metrics | |
import os | |
import glob | |
import torch.nn.functional as F | |
from models.temporal_patch_gan import Discriminator | |
import cv2 | |
import cvbase | |
import imageio | |
from skimage.feature import canny | |
from models.lafc_single import Model | |
from data.util.flow_utils import region_fill as rf | |
class Network(Trainer): | |
def init_model(self): | |
model_package = import_module('models.{}'.format(self.opt['model'])) | |
model = model_package.Model(self.opt) | |
dist_in = 3 | |
discriminator = Discriminator(in_channels=dist_in, conv_type=self.opt['conv_type'], | |
dist_cnum=self.opt['dist_cnum']) | |
optimizer = optim.Adam(model.parameters(), lr=float(self.opt['train']['lr']), | |
betas=(float(self.opt['train']['BETA1']), float(float(self.opt['train']['BETA2'])))) | |
dist_optim = optim.Adam(discriminator.parameters(), lr=float(self.opt['train']['lr']), | |
betas=(float(self.opt['train']['BETA1']), float(float(self.opt['train']['BETA2'])))) | |
if self.rank <= 0: | |
self.logger.info( | |
'Optimizer is Adam, BETA1: {}, BETA2: {}'.format(float(self.opt['train']['BETA1']), | |
float(self.opt['train']['BETA2']))) | |
step_size = int(math.ceil(self.opt['train']['UPDATE_INTERVAL'] / self.trainSize)) | |
if self.rank <= 0: | |
self.logger.info('Step size for optimizer is {} epoch'.format(step_size)) | |
scheduler = lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=self.opt['train']['lr_decay']) | |
dist_scheduler = lr_scheduler.StepLR(dist_optim, step_size=step_size, gamma=self.opt['train']['lr_decay']) | |
return model, discriminator, optimizer, dist_optim, scheduler, dist_scheduler | |
def init_flow_model(self): | |
flow_model = Model(self.opt['flow_config']) | |
state = torch.load(self.opt['flow_checkPoint'], | |
map_location=lambda storage, loc: storage.cuda(self.opt['device'])) | |
flow_model.load_state_dict(state['model_state_dict']) | |
flow_model = flow_model.to(self.opt['device']) | |
return flow_model | |
def resume_training(self): | |
gen_state = torch.load(self.opt['path']['gen_state'], | |
map_location=lambda storage, loc: storage.cuda(self.opt['device'])) | |
dis_state = torch.load(self.opt['path']['dis_state'], | |
map_location=lambda storage, loc: storage.cuda(self.opt['device'])) | |
opt_state = torch.load(self.opt['path']['opt_state'], | |
map_location=lambda storage, loc: storage.cuda(self.opt['device'])) | |
if self.rank <= 0: | |
self.logger.info('Resume state is activated') | |
self.logger.info('Resume training from epoch: {}, iter: {}'.format( | |
opt_state['epoch'], opt_state['iteration'] | |
)) | |
if self.opt['finetune'] == False: | |
start_epoch = opt_state['epoch'] | |
current_step = opt_state['iteration'] | |
self.optimizer.load_state_dict(opt_state['optimizer_state_dict']) | |
self.dist_optim.load_state_dict(opt_state['dist_optim_state_dict']) | |
self.scheduler.load_state_dict(opt_state['scheduler_state_dict']) | |
self.dist_scheduler.load_state_dict(opt_state['dist_scheduler_state_dict']) | |
else: | |
start_epoch = 0 | |
current_step = 0 | |
self.model.load_state_dict(gen_state['model_state_dict']) | |
self.dist.load_state_dict(dis_state['dist_state_dict']) | |
if self.rank <= 0: | |
self.logger.info('Resume training mode, optimizer, scheduler and model have been uploaded') | |
return start_epoch, current_step | |
def norm_flows(self, flows): | |
flattened_flows = flows.flatten(3) | |
flow_max = torch.max(flattened_flows, dim=-1, keepdim=True)[0] | |
flows = flows / flow_max.unsqueeze(-1) | |
return flows | |
def _trainEpoch(self, epoch): | |
for idx, train_data in enumerate(self.trainLoader): | |
self.currentStep += 1 | |
if self.currentStep > self.totalIterations: | |
if self.rank <= 0: | |
self.logger.info('Train process has been finished') | |
break | |
if self.opt['train']['WARMUP'] is not None and self.currentStep <= self.opt['train']['WARMUP'] // self.opt[ | |
'world_size']: | |
target_lr = self.opt['train']['lr'] * self.currentStep / ( | |
self.opt['train']['WARMUP']) | |
self.adjust_learning_rate(self.optimizer, target_lr) | |
frames = train_data['frames'] # tensor, [b, t, c, h, w] | |
masks = train_data['masks'] # tensor, [b, t, c, h, w] | |
if self.opt['flow_direction'] == 'for': | |
flows = train_data['forward_flo'] | |
elif self.opt['flow_direction'] == 'back': | |
flows = train_data['backward_flo'] | |
elif self.opt['flow_direction'] == 'bi': | |
raise NotImplementedError('Bidirectory flow mode is not implemented') | |
else: | |
raise ValueError('Unknown flow mode: {}'.format(self.opt['flow_direction'])) | |
frames = frames.to(self.opt['device']) # [b, t, c(3), h, w] | |
masks = masks.to(self.opt['device']) # [b, t, 1, h, w] | |
flows = flows.to(self.opt['device']) # [b, t, c(2), h, w] | |
b, t, c, h, w = flows.shape | |
flows = flows.reshape(b * t, c, h, w) | |
compressed_masks = masks.reshape(b * t, 1, h, w) | |
with torch.no_grad(): | |
flows = self.flow_model(flows, compressed_masks)[0] # filled flows | |
flows = flows.reshape(b, t, c, h, w) | |
flows = self.norm_flows(flows) | |
b, t, c, h, w = frames.shape | |
cm, cf = masks.shape[2], flows.shape[2] | |
masked_frames = frames * (1 - masks) | |
filled_frames = self.model(masked_frames, flows, masks) # filled_frames shape: [b, t, c, h, w] | |
frames = frames.view(b * t, c, h, w) | |
masks = masks.view(b * t, cm, h, w) | |
comp_img = filled_frames * masks + frames * (1 - masks) | |
real_vid_feat = self.dist(frames, t) | |
fake_vid_feat = self.dist(comp_img.detach(), t) | |
dis_real_loss = self.adversarial_loss(real_vid_feat, True, True) | |
dis_fake_loss = self.adversarial_loss(fake_vid_feat, False, True) | |
dis_loss = (dis_real_loss + dis_fake_loss) / 2 | |
self.dist_optim.zero_grad() | |
dis_loss.backward() | |
self.dist_optim.step() | |
# calculate generator loss | |
gen_vid_feat = self.dist(comp_img, t) | |
gan_loss = self.adversarial_loss(gen_vid_feat, True, False) | |
gen_loss = gan_loss * self.opt['adv'] | |
L1Loss_valid = self.validLoss(filled_frames * (1 - masks), | |
frames * (1 - masks)) / torch.mean(1 - masks) | |
L1Loss_masked = self.validLoss(filled_frames * masks, | |
frames * masks) / torch.mean(masks) | |
m_loss_valid = L1Loss_valid * self.opt['L1M'] | |
m_loss_masked = L1Loss_masked * self.opt['L1V'] | |
loss = m_loss_valid + m_loss_masked + gen_loss | |
self.optimizer.zero_grad() | |
loss.backward() | |
self.optimizer.step() | |
if self.opt['use_tb_logger'] and self.rank <= 0 and self.currentStep % 8 == 0: | |
print('Mask: {:.03f}, valid: {:.03f}, dis_fake: {:.03f}, dis_real: {:.03f}, adv: {:.03f}'.format( | |
m_loss_masked.item(), | |
m_loss_valid.item(), | |
dis_fake_loss.item(), | |
dis_real_loss.item(), | |
gen_loss.item() | |
)) | |
if self.opt['use_tb_logger'] and self.rank <= 0 and self.currentStep % 64 == 0: | |
self.tb_logger.add_scalar('{}/recon_mask'.format('train'), m_loss_masked.item(), | |
self.currentStep) | |
self.tb_logger.add_scalar('{}/recon_valid'.format('train'), m_loss_valid.item(), | |
self.currentStep) | |
self.tb_logger.add_scalar('{}/adv'.format('train'), gen_loss.item(), | |
self.currentStep) | |
self.tb_logger.add_scalar('train/dist', dis_loss.item(), self.currentStep) | |
if self.currentStep % self.opt['logger']['PRINT_FREQ'] == 0 and self.rank <= 0: | |
c_frames = comp_img.detach().permute(0, 2, 3, 1).cpu() | |
f_frames = frames.detach().permute(0, 2, 3, 1).cpu() | |
compLog = np.clip(np.array((c_frames + 1) / 2 * 255), 0, 255).astype(np.uint8) | |
framesLog = np.clip(np.array((f_frames + 1) / 2 * 255), 0, 255).astype(np.uint8) | |
logs = calculate_metrics(compLog, framesLog) | |
self._printLog(logs, epoch, loss) | |
def _printLog(self, logs, epoch, loss): | |
if self.countDown % self.opt['record_iter'] == 0: | |
self.total_psnr = 0 | |
self.total_ssim = 0 | |
self.total_l1 = 0 | |
self.total_l2 = 0 | |
self.total_loss = 0 | |
self.countDown = 0 | |
self.countDown += 1 | |
message = '[epoch:{:3d}, iter:{:7d}, lr:('.format(epoch, self.currentStep) | |
for v in self.get_lr(): | |
message += '{:.3e}, '.format(v) | |
message += ')] ' | |
self.total_psnr += logs['psnr'] | |
self.total_ssim += logs['ssim'] | |
self.total_l1 += logs['l1'] | |
self.total_l2 += logs['l2'] | |
self.total_loss += loss.item() | |
mean_psnr = self.total_psnr / self.countDown | |
mean_ssim = self.total_ssim / self.countDown | |
mean_l1 = self.total_l1 / self.countDown | |
mean_l2 = self.total_l2 / self.countDown | |
mean_loss = self.total_loss / self.countDown | |
message += '{:s}: {:.4e} '.format('mean_loss', mean_loss) | |
message += '{:s}: {:} '.format('mean_psnr', mean_psnr) | |
message += '{:s}: {:} '.format('mean_ssim', mean_ssim) | |
message += '{:s}: {:} '.format('mean_l1', mean_l1) | |
message += '{:s}: {:} '.format('mean_l2', mean_l2) | |
if self.opt['use_tb_logger']: | |
self.tb_logger.add_scalar('train/mean_psnr', mean_psnr, self.currentStep) | |
self.tb_logger.add_scalar('train/mean_ssim', mean_ssim, self.currentStep) | |
self.tb_logger.add_scalar('train/mean_l1', mean_l1, self.currentStep) | |
self.tb_logger.add_scalar('train/mean_l2', mean_l2, self.currentStep) | |
self.tb_logger.add_scalar('train/mean_loss', mean_loss, self.currentStep) | |
self.logger.info(message) | |
if self.currentStep % self.opt['logger']['SAVE_CHECKPOINT_FREQ'] == 0: | |
self.save_checkpoint(epoch) | |
def save_checkpoint(self, epoch): | |
if isinstance(self.model, torch.nn.DataParallel) or isinstance(self.model, | |
torch.nn.parallel.DistributedDataParallel): | |
model_state = self.model.module.state_dict() | |
dist_state = self.dist.module.state_dict() | |
else: | |
model_state = self.model.state_dict() | |
dist_state = self.dist.state_dict() | |
gen_state = { | |
'model_state_dict': model_state | |
} | |
dis_state = { | |
'dist_state_dict': dist_state | |
} | |
opt_state = { | |
'epoch': epoch, | |
'iteration': self.currentStep, | |
'optimizer_state_dict': self.optimizer.state_dict(), | |
'dist_optim_state_dict': self.dist_optim.state_dict(), | |
'scheduler_state_dict': self.scheduler.state_dict(), | |
'dist_scheduler_state_dict': self.dist_scheduler.state_dict() | |
} | |
gen_name = os.path.join(self.opt['path']['TRAINING_STATE'], | |
'gen_{}_{}.pth.tar'.format(epoch, self.currentStep)) | |
dist_name = os.path.join(self.opt['path']['TRAINING_STATE'], | |
'dist_{}_{}.pth.tar'.format(epoch, self.currentStep)) | |
opt_name = os.path.join(self.opt['path']['TRAINING_STATE'], | |
'opt_{}_{}.pth.tar'.format(epoch, self.currentStep)) | |
torch.save(gen_state, gen_name) | |
torch.save(dis_state, dist_name) | |
torch.save(opt_state, opt_name) | |
def _validate(self, epoch): | |
frame_path = self.valInfo['frame_root'] | |
mask_path = self.valInfo['mask_root'] | |
flow_path = self.valInfo['flow_root'] | |
self.model.eval() | |
test_list = os.listdir(flow_path) | |
if len(test_list) > 10: | |
test_list = test_list[:10] # only valid 10 videos to save test time | |
width, height = self.valInfo['flow_width'], self.valInfo['flow_height'] | |
psnr, ssim, l1, l2 = {}, {}, {}, {} | |
pivot, sequenceLen, ref_length = 20, self.opt['num_frames'], self.opt['ref_length'] | |
for i in range(len(test_list)): | |
videoName = test_list[i] | |
if self.rank <= 0: | |
self.logger.info('Video {} is been processed'.format(videoName)) | |
frame_dir = os.path.join(frame_path, videoName) | |
mask_dir = os.path.join(mask_path, videoName) | |
flow_dir = os.path.join(flow_path, videoName) | |
videoLen = len(glob.glob(os.path.join(mask_dir, '*.png'))) | |
neighbor_ids = [i for i in range(max(0, pivot - sequenceLen // 2), min(videoLen, pivot + sequenceLen // 2))] | |
ref_ids = self.get_ref_index(neighbor_ids, videoLen, ref_length) | |
ref_ids.extend(neighbor_ids) | |
frames = self.read_frames(frame_dir, width, height, ref_ids) | |
masks = self.read_masks(mask_dir, width, height, ref_ids) | |
flows = self.read_flows(flow_dir, width, height, ref_ids, videoLen - 1) | |
if frames == [] or masks == []: | |
if self.rank <= 0: | |
print('Video {} doesn\'t have enough frames'.format(videoName)) | |
continue | |
flows = self.diffusion_flows(flows, masks) | |
if self.rank <= 0: | |
self.logger.info('Frames, masks, and flows have been read') | |
frames = np.stack(frames, axis=0) # [t, h, w, c] | |
masks = np.stack(masks, axis=0) | |
flows = np.stack(flows, axis=0) | |
frames = torch.from_numpy(np.transpose(frames, (0, 3, 1, 2))).unsqueeze(0).float() | |
flows = torch.from_numpy(np.transpose(flows, (0, 3, 1, 2))).unsqueeze(0).float() | |
masks = torch.from_numpy(np.transpose(masks, (0, 3, 1, 2))).unsqueeze(0).float() | |
frames = frames / 127.5 - 1 | |
frames = frames.to(self.opt['device']) | |
masks = masks.to(self.opt['device']) | |
flows = flows.to(self.opt['device']) | |
b, t, c, h, w = flows.shape | |
flows = flows.reshape(b * t, c, h, w) | |
compressed_masks = masks.reshape(b * t, 1, h, w) | |
with torch.no_grad(): | |
flows = self.flow_model(flows, compressed_masks)[0] | |
flows = flows.reshape(b, t, c, h, w) | |
flows = self.norm_flows(flows) | |
b, t, c, h, w = frames.shape | |
cm, cf = masks.shape[2], flows.shape[2] | |
masked_frames = frames * (1 - masks) | |
with torch.no_grad(): | |
filled_frames = self.model(masked_frames, flows, masks) | |
frames = frames.view(b * t, c, h, w) | |
masks = masks.view(b * t, cm, h, w) | |
comp_img = filled_frames * masks + frames * (1 - masks) # [t, c, h, w] | |
# calculate metrics | |
psnr_avg, ssim_avg, l1_avg, l2_avg = self.metrics_calc(comp_img, frames) | |
psnr[videoName] = psnr_avg | |
ssim[videoName] = ssim_avg | |
l1[videoName] = l1_avg | |
l2[videoName] = l2_avg | |
# visualize frames and report the phase performance | |
if self.rank <= 0: | |
if self.opt['use_tb_logger']: | |
self.tb_logger.add_scalar('test/{}/l1'.format(videoName), l1_avg, | |
self.currentStep) | |
self.tb_logger.add_scalar('test/{}/l2'.format(videoName), l2_avg, self.currentStep) | |
self.tb_logger.add_scalar('test/{}/psnr'.format(videoName), psnr_avg, self.currentStep) | |
self.tb_logger.add_scalar('test/{}/ssim'.format(videoName), ssim_avg, self.currentStep) | |
masked_frames = masked_frames.view(b * t, c, h, w) | |
self.vis_frames(comp_img, masked_frames, frames, videoName, | |
epoch) # view the difference between diffused flows and the completed flows | |
mean_psnr = np.mean([psnr[k] for k in psnr.keys()]) | |
mean_ssim = np.mean([ssim[k] for k in ssim.keys()]) | |
mean_l1 = np.mean([l1[k] for k in l1.keys()]) | |
mean_l2 = np.mean([l2[k] for k in l2.keys()]) | |
self.logger.info( | |
'[epoch:{:3d}, vid:{}/{}], mean_l1: {:.4e}, mean_l2: {:.4e}, mean_psnr: {:}, mean_ssim: {:}'.format( | |
epoch, i, len(test_list), mean_l1, mean_l2, mean_psnr, mean_ssim)) | |
# give the overall performance | |
if self.rank <= 0: | |
mean_psnr = np.mean([psnr[k] for k in psnr.keys()]) | |
mean_ssim = np.mean([ssim[k] for k in ssim.keys()]) | |
mean_l1 = np.mean([l1[k] for k in l1.keys()]) | |
mean_l2 = np.mean([l2[k] for k in l2.keys()]) | |
self.logger.info( | |
'[epoch:{:3d}], mean_l1: {:.4e} mean_l2: {:.4e} mean_psnr: {:} mean_ssim: {:}'.format( | |
epoch, mean_l1, mean_l2, mean_psnr, mean_ssim)) | |
self.save_checkpoint(epoch) | |
self.model.train() | |
def get_ref_index(self, neighbor_ids, videoLen, ref_length): | |
ref_indices = [] | |
for i in range(0, videoLen, ref_length): | |
if not i in neighbor_ids: | |
ref_indices.append(i) | |
return ref_indices | |
def metrics_calc(self, results, frames): | |
psnr_avg, ssim_avg, l1_avg, l2_avg = 0, 0, 0, 0 | |
results = np.array(results.permute(0, 2, 3, 1).cpu()) | |
frames = np.array(frames.permute(0, 2, 3, 1).cpu()) | |
result = np.clip((results + 1) / 2 * 255, 0, 255).astype(np.uint8) | |
frames = np.clip((frames + 1) / 2 * 255, 0, 255).astype(np.uint8) | |
logs = calculate_metrics(result, frames) | |
psnr_avg += logs['psnr'] | |
ssim_avg += logs['ssim'] | |
l1_avg += logs['l1'] | |
l2_avg += logs['l2'] | |
return psnr_avg, ssim_avg, l1_avg, l2_avg | |
def read_frames(self, frame_dir, width, height, ref_indices): | |
frame_paths = sorted(glob.glob(os.path.join(frame_dir, '*.jpg'))) | |
frames = [] | |
if len(frame_paths) <= 30: | |
return frames | |
for i in ref_indices: | |
frame_path = os.path.join(frame_dir, '{:05d}.jpg'.format(i)) | |
frame = imageio.imread(frame_path) | |
frame = cv2.resize(frame, (width, height), cv2.INTER_LINEAR) | |
frames.append(frame) | |
return frames | |
def diffusion_flows(self, flows, masks): | |
assert len(flows) == len(masks), 'Length of flow: {}, length of mask: {}'.format(len(flows), len(masks)) | |
ret_flows = [] | |
for i in range(len(flows)): | |
flow, mask = flows[i], masks[i] | |
flow = self.diffusion_flow(flow, mask) | |
ret_flows.append(flow) | |
return ret_flows | |
def diffusion_flow(self, flow, mask): | |
mask = mask[:, :, 0] | |
flow_filled = np.zeros(flow.shape) | |
flow_filled[:, :, 0] = rf.regionfill(flow[:, :, 0] * (1 - mask), mask) | |
flow_filled[:, :, 1] = rf.regionfill(flow[:, :, 1] * (1 - mask), mask) | |
return flow_filled | |
def read_flows(self, flow_dir, width, height, ref_ids, frameMaxIndex): | |
if self.opt['flow_direction'] == 'for': | |
direction = 'forward_flo' | |
shift = 0 | |
elif self.opt['flow_direction'] == 'back': | |
direction = 'backward_flo' | |
shift = -1 | |
elif self.opt['flow_direction'] == 'bi': | |
raise NotImplementedError('Bidirectional flows processing are not implemented') | |
else: | |
raise ValueError('Unknown flow direction: {}'.format(self.opt['flow_direction'])) | |
flows = [] | |
flow_path = os.path.join(flow_dir, direction) | |
for i in ref_ids: | |
i += shift | |
if i >= frameMaxIndex: | |
i = frameMaxIndex - 1 | |
if i < 0: | |
i = 0 | |
flow_p = os.path.join(flow_path, '{:05d}.flo'.format(i)) | |
flow = cvbase.read_flow(flow_p) | |
pre_height, pre_width = flow.shape[:2] | |
flow = cv2.resize(flow, (width, height), cv2.INTER_LINEAR) | |
flow[:, :, 0] = flow[:, :, 0] / pre_width * width | |
flow[:, :, 1] = flow[:, :, 1] / pre_height * height | |
flows.append(flow) | |
return flows | |
def load_edges(self, frames, width, height): | |
edges = [] | |
for i in range(len(frames)): | |
frame = frames[i] | |
frame_gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) | |
edge = canny(frame_gray, sigma=self.valInfo['sigma'], mask=None, | |
low_threshold=self.valInfo['low_threshold'], | |
high_threshold=self.valInfo['high_threshold']).astype(np.float) # [h, w, 1] | |
edge_t = self.to_tensor(edge, width, height, mode='nearest') | |
edges.append(edge_t) | |
return edges | |
def to_tensor(self, frame, width, height, mode='bilinear'): | |
if len(frame.shape) == 2: | |
frame = frame[:, :, np.newaxis] | |
frame_t = torch.from_numpy(frame).unsqueeze(0).permute(0, 3, 1, 2).float() # [b, c, h, w] | |
if width != 0 and height != 0: | |
frame_t = F.interpolate(frame_t, size=(height, width), mode=mode) | |
return frame_t | |
def to_numpy(self, tensor): | |
array = np.array(tensor.permute(1, 2, 0)) | |
return array | |
def read_masks(self, mask_dir, width, height, ref_indices): | |
mask_path = sorted(glob.glob(os.path.join(mask_dir, '*.png'))) | |
masks = [] | |
if len(mask_path) < 30: | |
return masks | |
for i in ref_indices: | |
mask = cv2.imread(mask_path[i], 0) | |
mask = mask / 255. | |
mask = cv2.resize(mask, (width, height), cv2.INTER_NEAREST) | |
mask[mask > 0] = 1 | |
mask = mask[:, :, np.newaxis] | |
masks.append(mask) | |
return masks | |
def vis_frames(self, results, masked_frames, frames, video_name, epoch): | |
out_root = self.opt['path']['VAL_IMAGES'] | |
out_dir = os.path.join(out_root, str(epoch), video_name) | |
if not os.path.exists(out_dir): | |
os.makedirs(out_dir) | |
black_column_pixels = 20 | |
results, masked_frames, frames = results.cpu(), masked_frames.cpu(), frames.cpu() | |
T = results.shape[0] | |
for t in range(T): | |
result, masked_frame, frame = results[t], masked_frames[t], frames[t] | |
result = self.to_numpy(result) | |
masked_frame = self.to_numpy(masked_frame) | |
frame = self.to_numpy(frame) | |
result = np.clip(((result + 1) / 2) * 255, 0, 255) | |
frame = np.clip(((frame + 1) / 2) * 255, 0, 255) | |
masked_frame = np.clip(((masked_frame + 1) / 2) * 255, 0, 255) # normalize to [0~255] | |
height, width = result.shape[:2] | |
canvas = np.zeros((height, width * 3 + black_column_pixels * 2, 3)) | |
canvas[:, 0:width, :] = result | |
canvas[:, width + black_column_pixels: 2 * width + black_column_pixels, :] = frame | |
canvas[:, 2 * (width + black_column_pixels):, :] = masked_frame | |
imageio.imwrite(os.path.join(out_dir, 'result_compare_{:05d}.png'.format(t)), canvas) | |