oguzakif's picture
init repo
d4b77ac
raw
history blame
24.3 kB
from trainer import Trainer
from importlib import import_module
import math
import torch
from torch import optim
from torch.optim import lr_scheduler
import numpy as np
from metrics import calculate_metrics
import os
import glob
import torch.nn.functional as F
from models.temporal_patch_gan import Discriminator
import cv2
import cvbase
import imageio
from skimage.feature import canny
from models.lafc_single import Model
from data.util.flow_utils import region_fill as rf
class Network(Trainer):
def init_model(self):
model_package = import_module('models.{}'.format(self.opt['model']))
model = model_package.Model(self.opt)
dist_in = 3
discriminator = Discriminator(in_channels=dist_in, conv_type=self.opt['conv_type'],
dist_cnum=self.opt['dist_cnum'])
optimizer = optim.Adam(model.parameters(), lr=float(self.opt['train']['lr']),
betas=(float(self.opt['train']['BETA1']), float(float(self.opt['train']['BETA2']))))
dist_optim = optim.Adam(discriminator.parameters(), lr=float(self.opt['train']['lr']),
betas=(float(self.opt['train']['BETA1']), float(float(self.opt['train']['BETA2']))))
if self.rank <= 0:
self.logger.info(
'Optimizer is Adam, BETA1: {}, BETA2: {}'.format(float(self.opt['train']['BETA1']),
float(self.opt['train']['BETA2'])))
step_size = int(math.ceil(self.opt['train']['UPDATE_INTERVAL'] / self.trainSize))
if self.rank <= 0:
self.logger.info('Step size for optimizer is {} epoch'.format(step_size))
scheduler = lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=self.opt['train']['lr_decay'])
dist_scheduler = lr_scheduler.StepLR(dist_optim, step_size=step_size, gamma=self.opt['train']['lr_decay'])
return model, discriminator, optimizer, dist_optim, scheduler, dist_scheduler
def init_flow_model(self):
flow_model = Model(self.opt['flow_config'])
state = torch.load(self.opt['flow_checkPoint'],
map_location=lambda storage, loc: storage.cuda(self.opt['device']))
flow_model.load_state_dict(state['model_state_dict'])
flow_model = flow_model.to(self.opt['device'])
return flow_model
def resume_training(self):
gen_state = torch.load(self.opt['path']['gen_state'],
map_location=lambda storage, loc: storage.cuda(self.opt['device']))
dis_state = torch.load(self.opt['path']['dis_state'],
map_location=lambda storage, loc: storage.cuda(self.opt['device']))
opt_state = torch.load(self.opt['path']['opt_state'],
map_location=lambda storage, loc: storage.cuda(self.opt['device']))
if self.rank <= 0:
self.logger.info('Resume state is activated')
self.logger.info('Resume training from epoch: {}, iter: {}'.format(
opt_state['epoch'], opt_state['iteration']
))
if self.opt['finetune'] == False:
start_epoch = opt_state['epoch']
current_step = opt_state['iteration']
self.optimizer.load_state_dict(opt_state['optimizer_state_dict'])
self.dist_optim.load_state_dict(opt_state['dist_optim_state_dict'])
self.scheduler.load_state_dict(opt_state['scheduler_state_dict'])
self.dist_scheduler.load_state_dict(opt_state['dist_scheduler_state_dict'])
else:
start_epoch = 0
current_step = 0
self.model.load_state_dict(gen_state['model_state_dict'])
self.dist.load_state_dict(dis_state['dist_state_dict'])
if self.rank <= 0:
self.logger.info('Resume training mode, optimizer, scheduler and model have been uploaded')
return start_epoch, current_step
def norm_flows(self, flows):
flattened_flows = flows.flatten(3)
flow_max = torch.max(flattened_flows, dim=-1, keepdim=True)[0]
flows = flows / flow_max.unsqueeze(-1)
return flows
def _trainEpoch(self, epoch):
for idx, train_data in enumerate(self.trainLoader):
self.currentStep += 1
if self.currentStep > self.totalIterations:
if self.rank <= 0:
self.logger.info('Train process has been finished')
break
if self.opt['train']['WARMUP'] is not None and self.currentStep <= self.opt['train']['WARMUP'] // self.opt[
'world_size']:
target_lr = self.opt['train']['lr'] * self.currentStep / (
self.opt['train']['WARMUP'])
self.adjust_learning_rate(self.optimizer, target_lr)
frames = train_data['frames'] # tensor, [b, t, c, h, w]
masks = train_data['masks'] # tensor, [b, t, c, h, w]
if self.opt['flow_direction'] == 'for':
flows = train_data['forward_flo']
elif self.opt['flow_direction'] == 'back':
flows = train_data['backward_flo']
elif self.opt['flow_direction'] == 'bi':
raise NotImplementedError('Bidirectory flow mode is not implemented')
else:
raise ValueError('Unknown flow mode: {}'.format(self.opt['flow_direction']))
frames = frames.to(self.opt['device']) # [b, t, c(3), h, w]
masks = masks.to(self.opt['device']) # [b, t, 1, h, w]
flows = flows.to(self.opt['device']) # [b, t, c(2), h, w]
b, t, c, h, w = flows.shape
flows = flows.reshape(b * t, c, h, w)
compressed_masks = masks.reshape(b * t, 1, h, w)
with torch.no_grad():
flows = self.flow_model(flows, compressed_masks)[0] # filled flows
flows = flows.reshape(b, t, c, h, w)
flows = self.norm_flows(flows)
b, t, c, h, w = frames.shape
cm, cf = masks.shape[2], flows.shape[2]
masked_frames = frames * (1 - masks)
filled_frames = self.model(masked_frames, flows, masks) # filled_frames shape: [b, t, c, h, w]
frames = frames.view(b * t, c, h, w)
masks = masks.view(b * t, cm, h, w)
comp_img = filled_frames * masks + frames * (1 - masks)
real_vid_feat = self.dist(frames, t)
fake_vid_feat = self.dist(comp_img.detach(), t)
dis_real_loss = self.adversarial_loss(real_vid_feat, True, True)
dis_fake_loss = self.adversarial_loss(fake_vid_feat, False, True)
dis_loss = (dis_real_loss + dis_fake_loss) / 2
self.dist_optim.zero_grad()
dis_loss.backward()
self.dist_optim.step()
# calculate generator loss
gen_vid_feat = self.dist(comp_img, t)
gan_loss = self.adversarial_loss(gen_vid_feat, True, False)
gen_loss = gan_loss * self.opt['adv']
L1Loss_valid = self.validLoss(filled_frames * (1 - masks),
frames * (1 - masks)) / torch.mean(1 - masks)
L1Loss_masked = self.validLoss(filled_frames * masks,
frames * masks) / torch.mean(masks)
m_loss_valid = L1Loss_valid * self.opt['L1M']
m_loss_masked = L1Loss_masked * self.opt['L1V']
loss = m_loss_valid + m_loss_masked + gen_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.opt['use_tb_logger'] and self.rank <= 0 and self.currentStep % 8 == 0:
print('Mask: {:.03f}, valid: {:.03f}, dis_fake: {:.03f}, dis_real: {:.03f}, adv: {:.03f}'.format(
m_loss_masked.item(),
m_loss_valid.item(),
dis_fake_loss.item(),
dis_real_loss.item(),
gen_loss.item()
))
if self.opt['use_tb_logger'] and self.rank <= 0 and self.currentStep % 64 == 0:
self.tb_logger.add_scalar('{}/recon_mask'.format('train'), m_loss_masked.item(),
self.currentStep)
self.tb_logger.add_scalar('{}/recon_valid'.format('train'), m_loss_valid.item(),
self.currentStep)
self.tb_logger.add_scalar('{}/adv'.format('train'), gen_loss.item(),
self.currentStep)
self.tb_logger.add_scalar('train/dist', dis_loss.item(), self.currentStep)
if self.currentStep % self.opt['logger']['PRINT_FREQ'] == 0 and self.rank <= 0:
c_frames = comp_img.detach().permute(0, 2, 3, 1).cpu()
f_frames = frames.detach().permute(0, 2, 3, 1).cpu()
compLog = np.clip(np.array((c_frames + 1) / 2 * 255), 0, 255).astype(np.uint8)
framesLog = np.clip(np.array((f_frames + 1) / 2 * 255), 0, 255).astype(np.uint8)
logs = calculate_metrics(compLog, framesLog)
self._printLog(logs, epoch, loss)
def _printLog(self, logs, epoch, loss):
if self.countDown % self.opt['record_iter'] == 0:
self.total_psnr = 0
self.total_ssim = 0
self.total_l1 = 0
self.total_l2 = 0
self.total_loss = 0
self.countDown = 0
self.countDown += 1
message = '[epoch:{:3d}, iter:{:7d}, lr:('.format(epoch, self.currentStep)
for v in self.get_lr():
message += '{:.3e}, '.format(v)
message += ')] '
self.total_psnr += logs['psnr']
self.total_ssim += logs['ssim']
self.total_l1 += logs['l1']
self.total_l2 += logs['l2']
self.total_loss += loss.item()
mean_psnr = self.total_psnr / self.countDown
mean_ssim = self.total_ssim / self.countDown
mean_l1 = self.total_l1 / self.countDown
mean_l2 = self.total_l2 / self.countDown
mean_loss = self.total_loss / self.countDown
message += '{:s}: {:.4e} '.format('mean_loss', mean_loss)
message += '{:s}: {:} '.format('mean_psnr', mean_psnr)
message += '{:s}: {:} '.format('mean_ssim', mean_ssim)
message += '{:s}: {:} '.format('mean_l1', mean_l1)
message += '{:s}: {:} '.format('mean_l2', mean_l2)
if self.opt['use_tb_logger']:
self.tb_logger.add_scalar('train/mean_psnr', mean_psnr, self.currentStep)
self.tb_logger.add_scalar('train/mean_ssim', mean_ssim, self.currentStep)
self.tb_logger.add_scalar('train/mean_l1', mean_l1, self.currentStep)
self.tb_logger.add_scalar('train/mean_l2', mean_l2, self.currentStep)
self.tb_logger.add_scalar('train/mean_loss', mean_loss, self.currentStep)
self.logger.info(message)
if self.currentStep % self.opt['logger']['SAVE_CHECKPOINT_FREQ'] == 0:
self.save_checkpoint(epoch)
def save_checkpoint(self, epoch):
if isinstance(self.model, torch.nn.DataParallel) or isinstance(self.model,
torch.nn.parallel.DistributedDataParallel):
model_state = self.model.module.state_dict()
dist_state = self.dist.module.state_dict()
else:
model_state = self.model.state_dict()
dist_state = self.dist.state_dict()
gen_state = {
'model_state_dict': model_state
}
dis_state = {
'dist_state_dict': dist_state
}
opt_state = {
'epoch': epoch,
'iteration': self.currentStep,
'optimizer_state_dict': self.optimizer.state_dict(),
'dist_optim_state_dict': self.dist_optim.state_dict(),
'scheduler_state_dict': self.scheduler.state_dict(),
'dist_scheduler_state_dict': self.dist_scheduler.state_dict()
}
gen_name = os.path.join(self.opt['path']['TRAINING_STATE'],
'gen_{}_{}.pth.tar'.format(epoch, self.currentStep))
dist_name = os.path.join(self.opt['path']['TRAINING_STATE'],
'dist_{}_{}.pth.tar'.format(epoch, self.currentStep))
opt_name = os.path.join(self.opt['path']['TRAINING_STATE'],
'opt_{}_{}.pth.tar'.format(epoch, self.currentStep))
torch.save(gen_state, gen_name)
torch.save(dis_state, dist_name)
torch.save(opt_state, opt_name)
def _validate(self, epoch):
frame_path = self.valInfo['frame_root']
mask_path = self.valInfo['mask_root']
flow_path = self.valInfo['flow_root']
self.model.eval()
test_list = os.listdir(flow_path)
if len(test_list) > 10:
test_list = test_list[:10] # only valid 10 videos to save test time
width, height = self.valInfo['flow_width'], self.valInfo['flow_height']
psnr, ssim, l1, l2 = {}, {}, {}, {}
pivot, sequenceLen, ref_length = 20, self.opt['num_frames'], self.opt['ref_length']
for i in range(len(test_list)):
videoName = test_list[i]
if self.rank <= 0:
self.logger.info('Video {} is been processed'.format(videoName))
frame_dir = os.path.join(frame_path, videoName)
mask_dir = os.path.join(mask_path, videoName)
flow_dir = os.path.join(flow_path, videoName)
videoLen = len(glob.glob(os.path.join(mask_dir, '*.png')))
neighbor_ids = [i for i in range(max(0, pivot - sequenceLen // 2), min(videoLen, pivot + sequenceLen // 2))]
ref_ids = self.get_ref_index(neighbor_ids, videoLen, ref_length)
ref_ids.extend(neighbor_ids)
frames = self.read_frames(frame_dir, width, height, ref_ids)
masks = self.read_masks(mask_dir, width, height, ref_ids)
flows = self.read_flows(flow_dir, width, height, ref_ids, videoLen - 1)
if frames == [] or masks == []:
if self.rank <= 0:
print('Video {} doesn\'t have enough frames'.format(videoName))
continue
flows = self.diffusion_flows(flows, masks)
if self.rank <= 0:
self.logger.info('Frames, masks, and flows have been read')
frames = np.stack(frames, axis=0) # [t, h, w, c]
masks = np.stack(masks, axis=0)
flows = np.stack(flows, axis=0)
frames = torch.from_numpy(np.transpose(frames, (0, 3, 1, 2))).unsqueeze(0).float()
flows = torch.from_numpy(np.transpose(flows, (0, 3, 1, 2))).unsqueeze(0).float()
masks = torch.from_numpy(np.transpose(masks, (0, 3, 1, 2))).unsqueeze(0).float()
frames = frames / 127.5 - 1
frames = frames.to(self.opt['device'])
masks = masks.to(self.opt['device'])
flows = flows.to(self.opt['device'])
b, t, c, h, w = flows.shape
flows = flows.reshape(b * t, c, h, w)
compressed_masks = masks.reshape(b * t, 1, h, w)
with torch.no_grad():
flows = self.flow_model(flows, compressed_masks)[0]
flows = flows.reshape(b, t, c, h, w)
flows = self.norm_flows(flows)
b, t, c, h, w = frames.shape
cm, cf = masks.shape[2], flows.shape[2]
masked_frames = frames * (1 - masks)
with torch.no_grad():
filled_frames = self.model(masked_frames, flows, masks)
frames = frames.view(b * t, c, h, w)
masks = masks.view(b * t, cm, h, w)
comp_img = filled_frames * masks + frames * (1 - masks) # [t, c, h, w]
# calculate metrics
psnr_avg, ssim_avg, l1_avg, l2_avg = self.metrics_calc(comp_img, frames)
psnr[videoName] = psnr_avg
ssim[videoName] = ssim_avg
l1[videoName] = l1_avg
l2[videoName] = l2_avg
# visualize frames and report the phase performance
if self.rank <= 0:
if self.opt['use_tb_logger']:
self.tb_logger.add_scalar('test/{}/l1'.format(videoName), l1_avg,
self.currentStep)
self.tb_logger.add_scalar('test/{}/l2'.format(videoName), l2_avg, self.currentStep)
self.tb_logger.add_scalar('test/{}/psnr'.format(videoName), psnr_avg, self.currentStep)
self.tb_logger.add_scalar('test/{}/ssim'.format(videoName), ssim_avg, self.currentStep)
masked_frames = masked_frames.view(b * t, c, h, w)
self.vis_frames(comp_img, masked_frames, frames, videoName,
epoch) # view the difference between diffused flows and the completed flows
mean_psnr = np.mean([psnr[k] for k in psnr.keys()])
mean_ssim = np.mean([ssim[k] for k in ssim.keys()])
mean_l1 = np.mean([l1[k] for k in l1.keys()])
mean_l2 = np.mean([l2[k] for k in l2.keys()])
self.logger.info(
'[epoch:{:3d}, vid:{}/{}], mean_l1: {:.4e}, mean_l2: {:.4e}, mean_psnr: {:}, mean_ssim: {:}'.format(
epoch, i, len(test_list), mean_l1, mean_l2, mean_psnr, mean_ssim))
# give the overall performance
if self.rank <= 0:
mean_psnr = np.mean([psnr[k] for k in psnr.keys()])
mean_ssim = np.mean([ssim[k] for k in ssim.keys()])
mean_l1 = np.mean([l1[k] for k in l1.keys()])
mean_l2 = np.mean([l2[k] for k in l2.keys()])
self.logger.info(
'[epoch:{:3d}], mean_l1: {:.4e} mean_l2: {:.4e} mean_psnr: {:} mean_ssim: {:}'.format(
epoch, mean_l1, mean_l2, mean_psnr, mean_ssim))
self.save_checkpoint(epoch)
self.model.train()
def get_ref_index(self, neighbor_ids, videoLen, ref_length):
ref_indices = []
for i in range(0, videoLen, ref_length):
if not i in neighbor_ids:
ref_indices.append(i)
return ref_indices
def metrics_calc(self, results, frames):
psnr_avg, ssim_avg, l1_avg, l2_avg = 0, 0, 0, 0
results = np.array(results.permute(0, 2, 3, 1).cpu())
frames = np.array(frames.permute(0, 2, 3, 1).cpu())
result = np.clip((results + 1) / 2 * 255, 0, 255).astype(np.uint8)
frames = np.clip((frames + 1) / 2 * 255, 0, 255).astype(np.uint8)
logs = calculate_metrics(result, frames)
psnr_avg += logs['psnr']
ssim_avg += logs['ssim']
l1_avg += logs['l1']
l2_avg += logs['l2']
return psnr_avg, ssim_avg, l1_avg, l2_avg
def read_frames(self, frame_dir, width, height, ref_indices):
frame_paths = sorted(glob.glob(os.path.join(frame_dir, '*.jpg')))
frames = []
if len(frame_paths) <= 30:
return frames
for i in ref_indices:
frame_path = os.path.join(frame_dir, '{:05d}.jpg'.format(i))
frame = imageio.imread(frame_path)
frame = cv2.resize(frame, (width, height), cv2.INTER_LINEAR)
frames.append(frame)
return frames
def diffusion_flows(self, flows, masks):
assert len(flows) == len(masks), 'Length of flow: {}, length of mask: {}'.format(len(flows), len(masks))
ret_flows = []
for i in range(len(flows)):
flow, mask = flows[i], masks[i]
flow = self.diffusion_flow(flow, mask)
ret_flows.append(flow)
return ret_flows
def diffusion_flow(self, flow, mask):
mask = mask[:, :, 0]
flow_filled = np.zeros(flow.shape)
flow_filled[:, :, 0] = rf.regionfill(flow[:, :, 0] * (1 - mask), mask)
flow_filled[:, :, 1] = rf.regionfill(flow[:, :, 1] * (1 - mask), mask)
return flow_filled
def read_flows(self, flow_dir, width, height, ref_ids, frameMaxIndex):
if self.opt['flow_direction'] == 'for':
direction = 'forward_flo'
shift = 0
elif self.opt['flow_direction'] == 'back':
direction = 'backward_flo'
shift = -1
elif self.opt['flow_direction'] == 'bi':
raise NotImplementedError('Bidirectional flows processing are not implemented')
else:
raise ValueError('Unknown flow direction: {}'.format(self.opt['flow_direction']))
flows = []
flow_path = os.path.join(flow_dir, direction)
for i in ref_ids:
i += shift
if i >= frameMaxIndex:
i = frameMaxIndex - 1
if i < 0:
i = 0
flow_p = os.path.join(flow_path, '{:05d}.flo'.format(i))
flow = cvbase.read_flow(flow_p)
pre_height, pre_width = flow.shape[:2]
flow = cv2.resize(flow, (width, height), cv2.INTER_LINEAR)
flow[:, :, 0] = flow[:, :, 0] / pre_width * width
flow[:, :, 1] = flow[:, :, 1] / pre_height * height
flows.append(flow)
return flows
def load_edges(self, frames, width, height):
edges = []
for i in range(len(frames)):
frame = frames[i]
frame_gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
edge = canny(frame_gray, sigma=self.valInfo['sigma'], mask=None,
low_threshold=self.valInfo['low_threshold'],
high_threshold=self.valInfo['high_threshold']).astype(np.float) # [h, w, 1]
edge_t = self.to_tensor(edge, width, height, mode='nearest')
edges.append(edge_t)
return edges
def to_tensor(self, frame, width, height, mode='bilinear'):
if len(frame.shape) == 2:
frame = frame[:, :, np.newaxis]
frame_t = torch.from_numpy(frame).unsqueeze(0).permute(0, 3, 1, 2).float() # [b, c, h, w]
if width != 0 and height != 0:
frame_t = F.interpolate(frame_t, size=(height, width), mode=mode)
return frame_t
def to_numpy(self, tensor):
array = np.array(tensor.permute(1, 2, 0))
return array
def read_masks(self, mask_dir, width, height, ref_indices):
mask_path = sorted(glob.glob(os.path.join(mask_dir, '*.png')))
masks = []
if len(mask_path) < 30:
return masks
for i in ref_indices:
mask = cv2.imread(mask_path[i], 0)
mask = mask / 255.
mask = cv2.resize(mask, (width, height), cv2.INTER_NEAREST)
mask[mask > 0] = 1
mask = mask[:, :, np.newaxis]
masks.append(mask)
return masks
def vis_frames(self, results, masked_frames, frames, video_name, epoch):
out_root = self.opt['path']['VAL_IMAGES']
out_dir = os.path.join(out_root, str(epoch), video_name)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
black_column_pixels = 20
results, masked_frames, frames = results.cpu(), masked_frames.cpu(), frames.cpu()
T = results.shape[0]
for t in range(T):
result, masked_frame, frame = results[t], masked_frames[t], frames[t]
result = self.to_numpy(result)
masked_frame = self.to_numpy(masked_frame)
frame = self.to_numpy(frame)
result = np.clip(((result + 1) / 2) * 255, 0, 255)
frame = np.clip(((frame + 1) / 2) * 255, 0, 255)
masked_frame = np.clip(((masked_frame + 1) / 2) * 255, 0, 255) # normalize to [0~255]
height, width = result.shape[:2]
canvas = np.zeros((height, width * 3 + black_column_pixels * 2, 3))
canvas[:, 0:width, :] = result
canvas[:, width + black_column_pixels: 2 * width + black_column_pixels, :] = frame
canvas[:, 2 * (width + black_column_pixels):, :] = masked_frame
imageio.imwrite(os.path.join(out_dir, 'result_compare_{:05d}.png'.format(t)), canvas)