Spaces:
Sleeping
Sleeping
# distutils: language = c | |
# distutils: sources = common/maskApi.c | |
#************************************************************************** | |
# Microsoft COCO Toolbox. version 2.0 | |
# Data, paper, and tutorials available at: http://mscoco.org/ | |
# Code written by Piotr Dollar and Tsung-Yi Lin, 2015. | |
# Licensed under the Simplified BSD License [see coco/license.txt] | |
#************************************************************************** | |
__author__ = 'tsungyi' | |
import sys | |
PYTHON_VERSION = sys.version_info[0] | |
# import both Python-level and C-level symbols of Numpy | |
# the API uses Numpy to interface C and Python | |
import numpy as np | |
cimport numpy as np | |
from libc.stdlib cimport malloc, free | |
# intialized Numpy. must do. | |
np.import_array() | |
# import numpy C function | |
# we use PyArray_ENABLEFLAGS to make Numpy ndarray responsible to memoery management | |
cdef extern from "numpy/arrayobject.h": | |
void PyArray_ENABLEFLAGS(np.ndarray arr, int flags) | |
# Declare the prototype of the C functions in MaskApi.h | |
cdef extern from "maskApi.h": | |
ctypedef unsigned int uint | |
ctypedef unsigned long siz | |
ctypedef unsigned char byte | |
ctypedef double* BB | |
ctypedef struct RLE: | |
siz h, | |
siz w, | |
siz m, | |
uint* cnts, | |
void rlesInit( RLE **R, siz n ) | |
void rleEncode( RLE *R, const byte *M, siz h, siz w, siz n ) | |
void rleDecode( const RLE *R, byte *mask, siz n ) | |
void rleMerge( const RLE *R, RLE *M, siz n, int intersect ) | |
void rleArea( const RLE *R, siz n, uint *a ) | |
void rleIou( RLE *dt, RLE *gt, siz m, siz n, byte *iscrowd, double *o ) | |
void bbIou( BB dt, BB gt, siz m, siz n, byte *iscrowd, double *o ) | |
void rleToBbox( const RLE *R, BB bb, siz n ) | |
void rleFrBbox( RLE *R, const BB bb, siz h, siz w, siz n ) | |
void rleFrPoly( RLE *R, const double *xy, siz k, siz h, siz w ) | |
char* rleToString( const RLE *R ) | |
void rleFrString( RLE *R, char *s, siz h, siz w ) | |
# python class to wrap RLE array in C | |
# the class handles the memory allocation and deallocation | |
cdef class RLEs: | |
cdef RLE *_R | |
cdef siz _n | |
def __cinit__(self, siz n =0): | |
rlesInit(&self._R, n) | |
self._n = n | |
# free the RLE array here | |
def __dealloc__(self): | |
if self._R is not NULL: | |
for i in range(self._n): | |
free(self._R[i].cnts) | |
free(self._R) | |
def __getattr__(self, key): | |
if key == 'n': | |
return self._n | |
raise AttributeError(key) | |
# python class to wrap Mask array in C | |
# the class handles the memory allocation and deallocation | |
cdef class Masks: | |
cdef byte *_mask | |
cdef siz _h | |
cdef siz _w | |
cdef siz _n | |
def __cinit__(self, h, w, n): | |
self._mask = <byte*> malloc(h*w*n* sizeof(byte)) | |
self._h = h | |
self._w = w | |
self._n = n | |
# def __dealloc__(self): | |
# the memory management of _mask has been passed to np.ndarray | |
# it doesn't need to be freed here | |
# called when passing into np.array() and return an np.ndarray in column-major order | |
def __array__(self): | |
cdef np.npy_intp shape[1] | |
shape[0] = <np.npy_intp> self._h*self._w*self._n | |
# Create a 1D array, and reshape it to fortran/Matlab column-major array | |
ndarray = np.PyArray_SimpleNewFromData(1, shape, np.NPY_UINT8, self._mask).reshape((self._h, self._w, self._n), order='F') | |
# The _mask allocated by Masks is now handled by ndarray | |
PyArray_ENABLEFLAGS(ndarray, np.NPY_OWNDATA) | |
return ndarray | |
# internal conversion from Python RLEs object to compressed RLE format | |
def _toString(RLEs Rs): | |
cdef siz n = Rs.n | |
cdef bytes py_string | |
cdef char* c_string | |
objs = [] | |
for i in range(n): | |
c_string = rleToString( <RLE*> &Rs._R[i] ) | |
py_string = c_string | |
objs.append({ | |
'size': [Rs._R[i].h, Rs._R[i].w], | |
'counts': py_string | |
}) | |
free(c_string) | |
return objs | |
# internal conversion from compressed RLE format to Python RLEs object | |
def _frString(rleObjs): | |
cdef siz n = len(rleObjs) | |
Rs = RLEs(n) | |
cdef bytes py_string | |
cdef char* c_string | |
for i, obj in enumerate(rleObjs): | |
if PYTHON_VERSION == 2: | |
py_string = str(obj['counts']).encode('utf8') | |
elif PYTHON_VERSION == 3: | |
py_string = str.encode(obj['counts']) if type(obj['counts']) == str else obj['counts'] | |
else: | |
raise Exception('Python version must be 2 or 3') | |
c_string = py_string | |
rleFrString( <RLE*> &Rs._R[i], <char*> c_string, obj['size'][0], obj['size'][1] ) | |
return Rs | |
# encode mask to RLEs objects | |
# list of RLE string can be generated by RLEs member function | |
def encode(np.ndarray[np.uint8_t, ndim=3, mode='fortran'] mask): | |
h, w, n = mask.shape[0], mask.shape[1], mask.shape[2] | |
cdef RLEs Rs = RLEs(n) | |
rleEncode(Rs._R,<byte*>mask.data,h,w,n) | |
objs = _toString(Rs) | |
return objs | |
# decode mask from compressed list of RLE string or RLEs object | |
def decode(rleObjs): | |
cdef RLEs Rs = _frString(rleObjs) | |
h, w, n = Rs._R[0].h, Rs._R[0].w, Rs._n | |
masks = Masks(h, w, n) | |
rleDecode(<RLE*>Rs._R, masks._mask, n); | |
return np.array(masks) | |
def merge(rleObjs, intersect=0): | |
cdef RLEs Rs = _frString(rleObjs) | |
cdef RLEs R = RLEs(1) | |
rleMerge(<RLE*>Rs._R, <RLE*> R._R, <siz> Rs._n, intersect) | |
obj = _toString(R)[0] | |
return obj | |
def area(rleObjs): | |
cdef RLEs Rs = _frString(rleObjs) | |
cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint)) | |
rleArea(Rs._R, Rs._n, _a) | |
cdef np.npy_intp shape[1] | |
shape[0] = <np.npy_intp> Rs._n | |
a = np.array((Rs._n, ), dtype=np.uint8) | |
a = np.PyArray_SimpleNewFromData(1, shape, np.NPY_UINT32, _a) | |
PyArray_ENABLEFLAGS(a, np.NPY_OWNDATA) | |
return a | |
# iou computation. support function overload (RLEs-RLEs and bbox-bbox). | |
def iou( dt, gt, pyiscrowd ): | |
def _preproc(objs): | |
if len(objs) == 0: | |
return objs | |
if type(objs) == np.ndarray: | |
if len(objs.shape) == 1: | |
objs = objs.reshape((objs[0], 1)) | |
# check if it's Nx4 bbox | |
if not len(objs.shape) == 2 or not objs.shape[1] == 4: | |
raise Exception('numpy ndarray input is only for *bounding boxes* and should have Nx4 dimension') | |
objs = objs.astype(np.double) | |
elif type(objs) == list: | |
# check if list is in box format and convert it to np.ndarray | |
isbox = np.all(np.array([(len(obj)==4) and ((type(obj)==list) or (type(obj)==np.ndarray)) for obj in objs])) | |
isrle = np.all(np.array([type(obj) == dict for obj in objs])) | |
if isbox: | |
objs = np.array(objs, dtype=np.double) | |
if len(objs.shape) == 1: | |
objs = objs.reshape((1,objs.shape[0])) | |
elif isrle: | |
objs = _frString(objs) | |
else: | |
raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])') | |
else: | |
raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.') | |
return objs | |
def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): | |
rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data ) | |
def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou): | |
bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data ) | |
def _len(obj): | |
cdef siz N = 0 | |
if type(obj) == RLEs: | |
N = obj.n | |
elif len(obj)==0: | |
pass | |
elif type(obj) == np.ndarray: | |
N = obj.shape[0] | |
return N | |
# convert iscrowd to numpy array | |
cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8) | |
# simple type checking | |
cdef siz m, n | |
dt = _preproc(dt) | |
gt = _preproc(gt) | |
m = _len(dt) | |
n = _len(gt) | |
if m == 0 or n == 0: | |
return [] | |
if not type(dt) == type(gt): | |
raise Exception('The dt and gt should have the same data type, either RLEs, list or np.ndarray') | |
# define local variables | |
cdef double* _iou = <double*> 0 | |
cdef np.npy_intp shape[1] | |
# check type and assign iou function | |
if type(dt) == RLEs: | |
_iouFun = _rleIou | |
elif type(dt) == np.ndarray: | |
_iouFun = _bbIou | |
else: | |
raise Exception('input data type not allowed.') | |
_iou = <double*> malloc(m*n* sizeof(double)) | |
iou = np.zeros((m*n, ), dtype=np.double) | |
shape[0] = <np.npy_intp> m*n | |
iou = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _iou) | |
PyArray_ENABLEFLAGS(iou, np.NPY_OWNDATA) | |
_iouFun(dt, gt, iscrowd, m, n, iou) | |
return iou.reshape((m,n), order='F') | |
def toBbox( rleObjs ): | |
cdef RLEs Rs = _frString(rleObjs) | |
cdef siz n = Rs.n | |
cdef BB _bb = <BB> malloc(4*n* sizeof(double)) | |
rleToBbox( <const RLE*> Rs._R, _bb, n ) | |
cdef np.npy_intp shape[1] | |
shape[0] = <np.npy_intp> 4*n | |
bb = np.array((1,4*n), dtype=np.double) | |
bb = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _bb).reshape((n, 4)) | |
PyArray_ENABLEFLAGS(bb, np.NPY_OWNDATA) | |
return bb | |
def frBbox(np.ndarray[np.double_t, ndim=2] bb, siz h, siz w ): | |
cdef siz n = bb.shape[0] | |
Rs = RLEs(n) | |
rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n ) | |
objs = _toString(Rs) | |
return objs | |
def frPoly( poly, siz h, siz w ): | |
cdef np.ndarray[np.double_t, ndim=1] np_poly | |
n = len(poly) | |
Rs = RLEs(n) | |
for i, p in enumerate(poly): | |
np_poly = np.array(p, dtype=np.double, order='F') | |
rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w ) | |
objs = _toString(Rs) | |
return objs | |
def frUncompressedRLE(ucRles, siz h, siz w): | |
cdef np.ndarray[np.uint32_t, ndim=1] cnts | |
cdef RLE R | |
cdef uint *data | |
n = len(ucRles) | |
objs = [] | |
for i in range(n): | |
Rs = RLEs(1) | |
cnts = np.array(ucRles[i]['counts'], dtype=np.uint32) | |
# time for malloc can be saved here but it's fine | |
data = <uint*> malloc(len(cnts)* sizeof(uint)) | |
for j in range(len(cnts)): | |
data[j] = <uint> cnts[j] | |
R = RLE(ucRles[i]['size'][0], ucRles[i]['size'][1], len(cnts), <uint*> data) | |
Rs._R[0] = R | |
objs.append(_toString(Rs)[0]) | |
return objs | |
def frPyObjects(pyobj, h, w): | |
# encode rle from a list of python objects | |
if type(pyobj) == np.ndarray: | |
objs = frBbox(pyobj, h, w) | |
elif type(pyobj) == list and len(pyobj[0]) == 4: | |
objs = frBbox(pyobj, h, w) | |
elif type(pyobj) == list and len(pyobj[0]) > 4: | |
objs = frPoly(pyobj, h, w) | |
elif type(pyobj) == list and type(pyobj[0]) == dict \ | |
and 'counts' in pyobj[0] and 'size' in pyobj[0]: | |
objs = frUncompressedRLE(pyobj, h, w) | |
# encode rle from single python object | |
elif type(pyobj) == list and len(pyobj) == 4: | |
objs = frBbox([pyobj], h, w)[0] | |
elif type(pyobj) == list and len(pyobj) > 4: | |
objs = frPoly([pyobj], h, w)[0] | |
elif type(pyobj) == dict and 'counts' in pyobj and 'size' in pyobj: | |
objs = frUncompressedRLE([pyobj], h, w)[0] | |
else: | |
raise Exception('input type is not supported.') | |
return objs | |