Spaces:
Running
on
T4
Running
on
T4
import numpy as np | |
import torch | |
import torch.nn as nn | |
# https://zhuanlan.zhihu.com/p/112030273 | |
def warp_optical_flow(batch_x, batch_flow): | |
""" | |
Modified from https://github.com/NVlabs/PWC-Net/blob/fc6ebf9a70a7387164df09a3a2070ba16f9c1ede/PyTorch/models/PWCNet.py # NOQA | |
warp an im2 back to im1, according to the optical flow | |
x: [B, L, C, H, W] (im2) | |
flo: [B, L, 2, H, W] flow | |
""" | |
B, L, C, H, W = batch_x.shape | |
B = B * L | |
x = batch_x.contiguous().view(-1, C, H, W) | |
flo = batch_flow.view(-1, 2, H, W) | |
# mesh grid | |
xx = torch.arange(0, W).view(1, -1).repeat(H, 1) | |
yy = torch.arange(0, H).view(-1, 1).repeat(1, W) | |
xx = xx.view(1, 1, H, W).repeat(B, 1, 1, 1) | |
yy = yy.view(1, 1, H, W).repeat(B, 1, 1, 1) | |
grid = torch.cat((xx, yy), 1).float() | |
if x.is_cuda: | |
grid = grid.cuda() | |
vgrid = grid + flo | |
# scale grid to [-1, 1] | |
vgrid[:, 0, :, :] = 2.0 * vgrid[:, 0, :, :] / max(W - 1, 1) - 1.0 | |
vgrid[:, 1, :, :] = 2.0 * vgrid[:, 1, :, :] / max(H - 1, 1) - 1.0 | |
vgrid = vgrid.permute(0, 2, 3, 1) # B, H, W, 2(compatible with API) | |
output = nn.functional.grid_sample(x, vgrid) # 按照vgrid将x warp到output张量上 | |
mask = torch.autograd.Variable(torch.ones(x.size())).cuda() | |
mask = nn.functional.grid_sample(mask, vgrid) # 这个我觉得没有太大意义,因为warp之后还是1(mask默认全是1) | |
mask[mask < 0.9999] = 0 | |
mask[mask > 0] = 1 # 仍然全是1 | |
result = output * mask | |
return result.view(-1, L, C, H, W) | |
UNKNOWN_FLOW_THRESH = 1e7 | |
def flow_to_image(flow): | |
""" | |
Convert flow into middlebury color code image | |
:param flow: optical flow map | |
:return: optical flow image in middlebury color | |
""" | |
u = flow[:, :, 0] | |
v = flow[:, :, 1] | |
maxu = -999. | |
maxv = -999. | |
minu = 999. | |
minv = 999. | |
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) | |
u[idxUnknow] = 0 | |
v[idxUnknow] = 0 | |
maxu = max(maxu, np.max(u)) | |
minu = min(minu, np.min(u)) | |
maxv = max(maxv, np.max(v)) | |
minv = min(minv, np.min(v)) | |
rad = np.sqrt(u ** 2 + v ** 2) | |
maxrad = max(-1, np.max(rad)) | |
u = u / (maxrad + np.finfo(float).eps) | |
v = v / (maxrad + np.finfo(float).eps) | |
img = compute_color(u, v) | |
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) | |
img[idx] = 0 | |
return np.uint8(img) | |
def compute_color(u, v): | |
""" | |
compute optical flow color map | |
:param u: optical flow horizontal map | |
:param v: optical flow vertical map | |
:return: optical flow in color code | |
""" | |
[h, w] = u.shape | |
img = np.zeros([h, w, 3]) | |
nanIdx = np.isnan(u) | np.isnan(v) | |
u[nanIdx] = 0 | |
v[nanIdx] = 0 | |
colorwheel = make_color_wheel() | |
ncols = np.size(colorwheel, 0) | |
rad = np.sqrt(u ** 2 + v ** 2) | |
a = np.arctan2(-v, -u) / np.pi | |
fk = (a + 1) / 2 * (ncols - 1) + 1 | |
k0 = np.floor(fk).astype(int) | |
k1 = k0 + 1 | |
k1[k1 == ncols + 1] = 1 | |
f = fk - k0 | |
for i in range(0, np.size(colorwheel, 1)): | |
tmp = colorwheel[:, i] | |
col0 = tmp[k0 - 1] / 255 | |
col1 = tmp[k1 - 1] / 255 | |
col = (1 - f) * col0 + f * col1 | |
idx = rad <= 1 | |
col[idx] = 1 - rad[idx] * (1 - col[idx]) | |
notidx = np.logical_not(idx) | |
col[notidx] *= 0.75 | |
img[:, :, i] = np.uint8(np.floor(255 * col * (1 - nanIdx))) | |
return img | |
def make_color_wheel(): | |
""" | |
Generate color wheel according Middlebury color code | |
:return: Color wheel | |
""" | |
RY = 15 | |
YG = 6 | |
GC = 4 | |
CB = 11 | |
BM = 13 | |
MR = 6 | |
ncols = RY + YG + GC + CB + BM + MR | |
colorwheel = np.zeros([ncols, 3]) | |
col = 0 | |
# RY | |
colorwheel[0:RY, 0] = 255 | |
colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY)) | |
col += RY | |
# YG | |
colorwheel[col:col + YG, 0] = 255 - np.transpose(np.floor(255 * np.arange(0, YG) / YG)) | |
colorwheel[col:col + YG, 1] = 255 | |
col += YG | |
# GC | |
colorwheel[col:col + GC, 1] = 255 | |
colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC)) | |
col += GC | |
# CB | |
colorwheel[col:col + CB, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, CB) / CB)) | |
colorwheel[col:col + CB, 2] = 255 | |
col += CB | |
# BM | |
colorwheel[col:col + BM, 2] = 255 | |
colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM)) | |
col += + BM | |
# MR | |
colorwheel[col:col + MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) | |
colorwheel[col:col + MR, 0] = 255 | |
return colorwheel | |