Spaces:
Sleeping
Sleeping
import numpy as np | |
import cv2 | |
from scipy import sparse | |
from scipy.sparse.linalg import spsolve | |
# Laplacian filling | |
def regionfill(I, mask, factor=1.0): | |
if np.count_nonzero(mask) == 0: | |
return I.copy() | |
resize_mask = cv2.resize( | |
mask.astype(float), (0, 0), fx=factor, fy=factor) > 0 | |
resize_I = cv2.resize(I.astype(float), (0, 0), fx=factor, fy=factor) | |
maskPerimeter = findBoundaryPixels(resize_mask) | |
regionfillLaplace(resize_I, resize_mask, maskPerimeter) | |
resize_I = cv2.resize(resize_I, (I.shape[1], I.shape[0])) | |
resize_I[mask == 0] = I[mask == 0] | |
return resize_I | |
def findBoundaryPixels(mask): | |
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3)) | |
maskDilated = cv2.dilate(mask.astype(float), kernel) | |
return (maskDilated > 0) & (mask == 0) | |
def regionfillLaplace(I, mask, maskPerimeter): | |
height, width = I.shape | |
rightSide = formRightSide(I, maskPerimeter) | |
# Location of mask pixels | |
maskIdx = np.where(mask) | |
# Only keep values for pixels that are in the mask | |
rightSide = rightSide[maskIdx] | |
# Number the mask pixels in a grid matrix | |
grid = -np.ones((height, width)) | |
grid[maskIdx] = range(0, maskIdx[0].size) | |
# Pad with zeros to avoid "index out of bounds" errors in the for loop | |
grid = padMatrix(grid) | |
gridIdx = np.where(grid >= 0) | |
# Form the connectivity matrix D=sparse(i,j,s) | |
# Connect each mask pixel to itself | |
i = np.arange(0, maskIdx[0].size) | |
j = np.arange(0, maskIdx[0].size) | |
# The coefficient is the number of neighbors over which we average | |
numNeighbors = computeNumberOfNeighbors(height, width) | |
s = numNeighbors[maskIdx] | |
# Now connect the N,E,S,W neighbors if they exist | |
for direction in ((-1, 0), (0, 1), (1, 0), (0, -1)): | |
# Possible neighbors in the current direction | |
neighbors = grid[gridIdx[0] + direction[0], gridIdx[1] + direction[1]] | |
# ConDnect mask points to neighbors with -1's | |
index = (neighbors >= 0) | |
i = np.concatenate((i, grid[gridIdx[0][index], gridIdx[1][index]])) | |
j = np.concatenate((j, neighbors[index])) | |
s = np.concatenate((s, -np.ones(np.count_nonzero(index)))) | |
D = sparse.coo_matrix((s, (i.astype(int), j.astype(int)))).tocsr() | |
sol = spsolve(D, rightSide) | |
I[maskIdx] = sol | |
return I | |
def formRightSide(I, maskPerimeter): | |
height, width = I.shape | |
perimeterValues = np.zeros((height, width)) | |
perimeterValues[maskPerimeter] = I[maskPerimeter] | |
rightSide = np.zeros((height, width)) | |
rightSide[1:height - 1, 1:width - 1] = ( | |
perimeterValues[0:height - 2, 1:width - 1] + | |
perimeterValues[2:height, 1:width - 1] + | |
perimeterValues[1:height - 1, 0:width - 2] + | |
perimeterValues[1:height - 1, 2:width]) | |
rightSide[1:height - 1, 0] = ( | |
perimeterValues[0:height - 2, 0] + perimeterValues[2:height, 0] + | |
perimeterValues[1:height - 1, 1]) | |
rightSide[1:height - 1, width - 1] = ( | |
perimeterValues[0:height - 2, width - 1] + | |
perimeterValues[2:height, width - 1] + | |
perimeterValues[1:height - 1, width - 2]) | |
rightSide[0, 1:width - 1] = ( | |
perimeterValues[1, 1:width - 1] + perimeterValues[0, 0:width - 2] + | |
perimeterValues[0, 2:width]) | |
rightSide[height - 1, 1:width - 1] = ( | |
perimeterValues[height - 2, 1:width - 1] + | |
perimeterValues[height - 1, 0:width - 2] + | |
perimeterValues[height - 1, 2:width]) | |
rightSide[0, 0] = perimeterValues[0, 1] + perimeterValues[1, 0] | |
rightSide[0, width - 1] = ( | |
perimeterValues[0, width - 2] + perimeterValues[1, width - 1]) | |
rightSide[height - 1, 0] = ( | |
perimeterValues[height - 2, 0] + perimeterValues[height - 1, 1]) | |
rightSide[height - 1, width - 1] = (perimeterValues[height - 2, width - 1] + | |
perimeterValues[height - 1, width - 2]) | |
return rightSide | |
def computeNumberOfNeighbors(height, width): | |
# Initialize | |
numNeighbors = np.zeros((height, width)) | |
# Interior pixels have 4 neighbors | |
numNeighbors[1:height - 1, 1:width - 1] = 4 | |
# Border pixels have 3 neighbors | |
numNeighbors[1:height - 1, (0, width - 1)] = 3 | |
numNeighbors[(0, height - 1), 1:width - 1] = 3 | |
# Corner pixels have 2 neighbors | |
numNeighbors[(0, 0, height - 1, height - 1), (0, width - 1, 0, | |
width - 1)] = 2 | |
return numNeighbors | |
def padMatrix(grid): | |
height, width = grid.shape | |
gridPadded = -np.ones((height + 2, width + 2)) | |
gridPadded[1:height + 1, 1:width + 1] = grid | |
gridPadded = gridPadded.astype(grid.dtype) | |
return gridPadded | |
if __name__ == '__main__': | |
import time | |
x = np.linspace(0, 255, 500) | |
xv, _ = np.meshgrid(x, x) | |
image = ((xv + np.transpose(xv)) / 2.0).astype(int) | |
mask = np.zeros((500, 500)) | |
mask[100:259, 100:259] = 1 | |
mask = (mask > 0) | |
image[mask] = 0 | |
st = time.time() | |
inpaint = regionfill(image, mask, 0.5).astype(np.uint8) | |
print(time.time() - st) | |
cv2.imshow('img', np.concatenate((image.astype(np.uint8), inpaint))) | |
cv2.waitKey() | |