Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import requests | |
| import os | |
| import json | |
| from dotenv import load_dotenv | |
| import PyPDF2 | |
| import io | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import FAISS | |
| load_dotenv() | |
| # Initialize session state variables | |
| if "vectorstore" not in st.session_state: | |
| st.session_state.vectorstore = None | |
| if "chat_history" not in st.session_state: | |
| st.session_state.chat_history = [] | |
| def reset_conversation(): | |
| st.session_state.vectorstore = None | |
| st.session_state.chat_history = [] | |
| def get_pdf_text(pdf_docs): | |
| text = "" | |
| for pdf in pdf_docs: | |
| pdf_reader = PyPDF2.PdfReader(pdf) | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| return text | |
| def get_text_chunks(text): | |
| text_splitter = CharacterTextSplitter( | |
| separator="\n", | |
| chunk_size=1000, | |
| chunk_overlap=200, | |
| length_function=len | |
| ) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| def get_vectorstore(text_chunks): | |
| embeddings = HuggingFaceEmbeddings() | |
| vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
| return vectorstore | |
| def get_together_response(prompt, history): | |
| url = "https://api.together.xyz/v1/chat/completions" | |
| model_link = "NousResearch/Nous-Hermes-2-Yi-34B" | |
| messages = [{"role": "system", "content": "You are an AI assistant that helps users understand the content of their PDFs. Provide concise and relevant answers based on the information in the documents."}] | |
| for human, ai in history: | |
| messages.append({"role": "user", "content": human}) | |
| messages.append({"role": "assistant", "content": ai}) | |
| messages.append({"role": "user", "content": prompt}) | |
| payload = { | |
| "model": model_link, | |
| "messages": messages, | |
| "temperature": 0.7, | |
| "top_p": 0.95, | |
| "top_k": 50, | |
| "repetition_penalty": 1, | |
| "max_tokens": 1024 | |
| } | |
| headers = { | |
| "accept": "application/json", | |
| "content-type": "application/json", | |
| "Authorization": f"Bearer {os.getenv('TOGETHER_API_KEY')}" | |
| } | |
| try: | |
| response = requests.post(url, json=payload, headers=headers) | |
| response.raise_for_status() | |
| return response.json()['choices'][0]['message']['content'] | |
| except requests.exceptions.RequestException as e: | |
| return f"Error: {str(e)}" | |
| def handle_userinput(user_question): | |
| if st.session_state.vectorstore: | |
| docs = st.session_state.vectorstore.similarity_search(user_question) | |
| context = "\n".join([doc.page_content for doc in docs]) | |
| prompt = f"Context from PDFs:\n{context}\n\nQuestion: {user_question}\nAnswer:" | |
| response = get_together_response(prompt, st.session_state.chat_history) | |
| st.session_state.chat_history.append((user_question, response)) | |
| return response | |
| else: | |
| return "Please upload and process PDF documents first." | |
| # Streamlit application | |
| st.set_page_config(page_title="Chat with your PDFs", page_icon=":books:") | |
| st.header("Chat with your PDFs :books:") | |
| # Sidebar | |
| with st.sidebar: | |
| st.subheader("Your documents") | |
| pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
| if st.button("Process"): | |
| with st.spinner("Processing"): | |
| # Get PDF text | |
| raw_text = get_pdf_text(pdf_docs) | |
| # Get the text chunks | |
| text_chunks = get_text_chunks(raw_text) | |
| # Create vector store | |
| st.session_state.vectorstore = get_vectorstore(text_chunks) | |
| st.success("PDFs processed successfully!") | |
| st.button('Reset Chat', on_click=reset_conversation) | |
| # Main chat interface | |
| if st.session_state.vectorstore is None: | |
| st.write("Please upload PDF documents and click 'Process' to start chatting.") | |
| else: | |
| user_question = st.text_input("Ask a question about your documents:") | |
| if user_question: | |
| response = handle_userinput(user_question) | |
| st.write("Human: " + user_question) | |
| st.write("AI: " + response) | |
| # Display chat history | |
| st.subheader("Chat History") | |
| for human, ai in st.session_state.chat_history: | |
| st.write("Human: " + human) | |
| st.write("AI: " + ai) | |
| st.write("---") |