ASledziewska commited on
Commit
4a70236
·
1 Parent(s): a6a602a

updated API key reference

Browse files
Files changed (2) hide show
  1. app.py +5 -6
  2. llm_response_generator.py +14 -15
app.py CHANGED
@@ -7,7 +7,6 @@
7
  # - Updated to UI to show predicted mental health condition in behind the scence regardless of the ositive/negative sentiment
8
  ###
9
 
10
- from dotenv import load_dotenv, find_dotenv
11
  import pandas as pd
12
  import streamlit as st
13
  from q_learning_chatbot import QLearningChatbot
@@ -251,7 +250,7 @@ if user_message:
251
  print(st.session_state.messages)
252
 
253
  # LLM Response Generator
254
- load_dotenv(find_dotenv())
255
 
256
  llm_model = LLLResponseGenerator()
257
  temperature = 0.5
@@ -265,10 +264,10 @@ if user_message:
265
  # Question asked to the user: {question}
266
 
267
  template = """INSTRUCTIONS: {context}
268
-
269
- Respond to the user with a tone of {ai_tone}.
270
-
271
- Response by the user: {user_text}
272
  Response;
273
  """
274
  context = f"You are a mental health supporting non-medical assistant. Provide some advice and ask a relevant question back to the user. {all_messages}"
 
7
  # - Updated to UI to show predicted mental health condition in behind the scence regardless of the ositive/negative sentiment
8
  ###
9
 
 
10
  import pandas as pd
11
  import streamlit as st
12
  from q_learning_chatbot import QLearningChatbot
 
250
  print(st.session_state.messages)
251
 
252
  # LLM Response Generator
253
+ HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
254
 
255
  llm_model = LLLResponseGenerator()
256
  temperature = 0.5
 
264
  # Question asked to the user: {question}
265
 
266
  template = """INSTRUCTIONS: {context}
267
+
268
+ Respond to the user with a tone of {ai_tone}.
269
+
270
+ Response by the user: {user_text}
271
  Response;
272
  """
273
  context = f"You are a mental health supporting non-medical assistant. Provide some advice and ask a relevant question back to the user. {all_messages}"
llm_response_generator.py CHANGED
@@ -2,14 +2,13 @@
2
  #- Author: Jaelin Lee
3
  #- Date: Mar 16, 2024
4
  #- Description: Calls HuggingFace API to generate natural response.
5
- #- Credit: The initial code is from Abhishek Dutta.
6
- # Most of the code is kept as he created.
7
  # I only added a modification to convert it to class.
8
  # And, I tweaked the prompt to feed into the `streamlit_app.py` file.
9
  #---
10
 
11
  import os
12
- from dotenv import load_dotenv, find_dotenv
13
  from langchain_community.llms import HuggingFaceHub
14
  from langchain_community.llms import OpenAI
15
  # from langchain.llms import HuggingFaceHub, OpenAI
@@ -23,7 +22,7 @@ class LLLResponseGenerator():
23
 
24
  def __init__(self):
25
  print("initialized")
26
-
27
 
28
  def llm_inference(
29
  self,
@@ -117,7 +116,7 @@ class LLLResponseGenerator():
117
 
118
  if __name__ == "__main__":
119
  # Please ensure you have a .env file available with 'HUGGINGFACEHUB_API_TOKEN' and 'OPENAI_API_KEY' values.
120
- load_dotenv(find_dotenv())
121
 
122
  context = "You are a mental health supporting non-medical assistant. DO NOT PROVIDE any medical advice with conviction."
123
 
@@ -130,15 +129,15 @@ if __name__ == "__main__":
130
 
131
  # The user may have signs of {questionnaire}.
132
  template = """INSTRUCTIONS: {context}
133
-
134
- Respond to the user with a tone of {ai_tone}.
135
-
136
  Question asked to the user: {question}
137
-
138
- Response by the user: {user_text}
139
-
140
  Provide some advice and ask a relevant question back to the user.
141
-
142
  Response;
143
  """
144
 
@@ -146,7 +145,7 @@ if __name__ == "__main__":
146
  max_length = 128
147
 
148
  model = LLLResponseGenerator()
149
-
150
 
151
  llm_response = model.llm_inference(
152
  model_type="huggingface",
@@ -159,5 +158,5 @@ if __name__ == "__main__":
159
  temperature=temperature,
160
  max_length=max_length,
161
  )
162
-
163
- print(llm_response)
 
2
  #- Author: Jaelin Lee
3
  #- Date: Mar 16, 2024
4
  #- Description: Calls HuggingFace API to generate natural response.
5
+ #- Credit: The initial code is from Abhishek Dutta.
6
+ # Most of the code is kept as he created.
7
  # I only added a modification to convert it to class.
8
  # And, I tweaked the prompt to feed into the `streamlit_app.py` file.
9
  #---
10
 
11
  import os
 
12
  from langchain_community.llms import HuggingFaceHub
13
  from langchain_community.llms import OpenAI
14
  # from langchain.llms import HuggingFaceHub, OpenAI
 
22
 
23
  def __init__(self):
24
  print("initialized")
25
+
26
 
27
  def llm_inference(
28
  self,
 
116
 
117
  if __name__ == "__main__":
118
  # Please ensure you have a .env file available with 'HUGGINGFACEHUB_API_TOKEN' and 'OPENAI_API_KEY' values.
119
+ HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
120
 
121
  context = "You are a mental health supporting non-medical assistant. DO NOT PROVIDE any medical advice with conviction."
122
 
 
129
 
130
  # The user may have signs of {questionnaire}.
131
  template = """INSTRUCTIONS: {context}
132
+
133
+ Respond to the user with a tone of {ai_tone}.
134
+
135
  Question asked to the user: {question}
136
+
137
+ Response by the user: {user_text}
138
+
139
  Provide some advice and ask a relevant question back to the user.
140
+
141
  Response;
142
  """
143
 
 
145
  max_length = 128
146
 
147
  model = LLLResponseGenerator()
148
+
149
 
150
  llm_response = model.llm_inference(
151
  model_type="huggingface",
 
158
  temperature=temperature,
159
  max_length=max_length,
160
  )
161
+
162
+ print(llm_response)