Spaces:
Sleeping
Sleeping
### | |
# - Author: Jaelin Lee, Abhishek Dutta | |
# - Date: Mar 23, 2024 | |
# - Description: Streamlit UI for mental health support chatbot using sentiment analsys, RL, BM25/ChromaDB, and LLM. | |
# - Note: | |
# - Updated to UI to show predicted mental health condition in behind the scence regardless of the ositive/negative sentiment | |
### | |
from dotenv import load_dotenv, find_dotenv | |
import pandas as pd | |
import streamlit as st | |
from q_learning_chatbot import QLearningChatbot | |
from xgb_mental_health import MentalHealthClassifier | |
from bm25_retreive_question import QuestionRetriever as QuestionRetriever_bm25 | |
from Chromadb_storage_JyotiNigam import QuestionRetriever as QuestionRetriever_chromaDB | |
from llm_response_generator import LLLResponseGenerator | |
import os | |
from llama_guard import moderate_chat, get_category_name | |
from gtts import gTTS | |
from io import BytesIO | |
from streamlit_mic_recorder import speech_to_text | |
import re | |
# Streamlit UI | |
st.title("MindfulMedia Mentor") | |
# Define states and actions | |
states = [ | |
"Negative", | |
"Moderately Negative", | |
"Neutral", | |
"Moderately Positive", | |
"Positive", | |
] | |
actions = ["encouragement", "empathy", "spiritual"] | |
# Initialize Q-learning chatbot and mental health classifier | |
chatbot = QLearningChatbot(states, actions) | |
# Initialize MentalHealthClassifier | |
# data_path = "/Users/jaelinlee/Documents/projects/fomo/input/data.csv" | |
data_path = os.path.join("data", "data.csv") | |
print(data_path) | |
tokenizer_model_name = "nlptown/bert-base-multilingual-uncased-sentiment" | |
mental_classifier_model_path = "mental_health_model.pkl" | |
mental_classifier = MentalHealthClassifier(data_path, mental_classifier_model_path) | |
if not os.path.exists(mental_classifier_model_path): | |
mental_classifier.initialize_tokenizer(tokenizer_model_name) | |
X, y = mental_classifier.preprocess_data() | |
y_test, y_pred = mental_classifier.train_model(X, y) | |
mental_classifier.save_model() | |
else: | |
mental_classifier.load_model() | |
mental_classifier.initialize_tokenizer(tokenizer_model_name) # Ensure tokenizer is initialized if loading model from pickle | |
# X, y = mental_classifier.preprocess_data() # Preprocess data again if needed | |
# mental_classifier.model.fit(X, y) # Fit the loaded model to the data | |
# Function to display Q-table | |
def display_q_table(q_values, states, actions): | |
q_table_dict = {"State": states} | |
for i, action in enumerate(actions): | |
q_table_dict[action] = q_values[:, i] | |
q_table_df = pd.DataFrame(q_table_dict) | |
return q_table_df | |
def text_to_speech(text): | |
# Use gTTS to convert text to speech | |
tts = gTTS(text=text, lang="en") | |
# Save the speech as bytes in memory | |
fp = BytesIO() | |
tts.write_to_fp(fp) | |
return fp | |
def speech_recognition_callback(): | |
# Ensure that speech output is available | |
if st.session_state.my_stt_output is None: | |
st.session_state.p01_error_message = "Please record your response again." | |
return | |
# Clear any previous error messages | |
st.session_state.p01_error_message = None | |
# Store the speech output in the session state | |
st.session_state.speech_input = st.session_state.my_stt_output | |
def remove_html_tags(text): | |
# clean_text = re.sub("<.*?>", "", text) | |
clean_text = re.sub(r'<.*?>|- |"|\\n', '', text) | |
# Remove indentation | |
clean_text = clean_text.strip() | |
# Remove new lines | |
clean_text = clean_text.replace('\n', ' ') | |
return clean_text | |
# Initialize memory | |
if "entered_text" not in st.session_state: | |
st.session_state.entered_text = [] | |
if "entered_mood" not in st.session_state: | |
st.session_state.entered_mood = [] | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "user_sentiment" not in st.session_state: | |
st.session_state.user_sentiment = "Neutral" | |
if "mood_trend" not in st.session_state: | |
st.session_state.mood_trend = "Unchanged" | |
if "predicted_mental_category" not in st.session_state: | |
st.session_state.predicted_mental_category = "" | |
if "ai_tone" not in st.session_state: | |
st.session_state.ai_tone = "Empathy" | |
if "mood_trend_symbol" not in st.session_state: | |
st.session_state.mood_trend_symbol = "" | |
if "show_question" not in st.session_state: | |
st.session_state.show_question = False | |
if "asked_questions" not in st.session_state: | |
st.session_state.asked_questions = [] | |
# Check if 'llama_guard_enabled' is already in session state, otherwise initialize it | |
if "llama_guard_enabled" not in st.session_state: | |
st.session_state["llama_guard_enabled"] = False # Default value to False | |
# Select Question Retriever | |
selected_retriever_option = st.sidebar.selectbox( | |
"Choose Question Retriever", ("BM25", "ChromaDB") | |
) | |
if selected_retriever_option == "BM25": | |
retriever = QuestionRetriever_bm25() | |
if selected_retriever_option == "ChromaDB": | |
retriever = QuestionRetriever_chromaDB() | |
for message in st.session_state.messages: | |
with st.chat_message(message.get("role")): | |
st.write(message.get("content")) | |
section_visible = True | |
# Collect user input | |
# Add a radio button to choose input mode | |
input_mode = st.sidebar.radio("Select input mode:", ["Text", "Speech"]) | |
user_message = None | |
if input_mode == "Speech": | |
# Use the speech_to_text function to capture speech input | |
speech_input = speech_to_text(key="my_stt", callback=speech_recognition_callback) | |
# Check if speech input is available | |
if "speech_input" in st.session_state and st.session_state.speech_input: | |
# Display the speech input | |
# st.text(f"Speech Input: {st.session_state.speech_input}") | |
# Process the speech input as a query | |
user_message = st.session_state.speech_input | |
st.session_state.speech_input = None | |
else: | |
user_message = st.chat_input("Type your message here:") | |
# Modify the checkbox call to include a unique key parameter | |
llama_guard_enabled = st.sidebar.checkbox( | |
"Enable LlamaGuard", | |
value=st.session_state["llama_guard_enabled"], | |
key="llama_guard_toggle", | |
) | |
# Update the session state based on the checkbox interaction | |
st.session_state["llama_guard_enabled"] = llama_guard_enabled | |
# Take user input | |
if user_message: | |
st.session_state.entered_text.append(user_message) | |
st.session_state.messages.append({"role": "user", "content": user_message}) | |
with st.chat_message("user"): | |
st.write(user_message) | |
is_safe = True | |
if st.session_state["llama_guard_enabled"]: | |
# guard_status = moderate_chat(user_prompt) | |
guard_status, error = moderate_chat(user_message) | |
if error: | |
st.error(f"Failed to retrieve data from Llama Guard: {error}") | |
else: | |
if "unsafe" in guard_status[0]["generated_text"]: | |
is_safe = False | |
# added on March 24th | |
unsafe_category_name = get_category_name( | |
guard_status[0]["generated_text"] | |
) | |
if is_safe == False: | |
response = f"I see you are asking something about {unsafe_category_name} Due to eithical and safety reasons, I can't provide the help you need. Please reach out to someone who can, like a family member, friend, or therapist. In urgent situations, contact emergency services or a crisis hotline. Remember, asking for help is brave, and you're not alone." | |
st.session_state.messages.append({"role": "ai", "content": response}) | |
with st.chat_message("ai"): | |
st.markdown(response) | |
speech_fp = text_to_speech(response) | |
# Play the speech | |
st.audio(speech_fp, format="audio/mp3") | |
else: | |
# Detect mental condition | |
with st.spinner("Processing..."): | |
mental_classifier.initialize_tokenizer(tokenizer_model_name) | |
mental_classifier.preprocess_data() | |
predicted_mental_category = mental_classifier.predict_category(user_message) | |
print("Predicted mental health condition:", predicted_mental_category) | |
# Detect sentiment | |
user_sentiment = chatbot.detect_sentiment(user_message) | |
# Retrieve question | |
if user_sentiment in ["Negative", "Moderately Negative", "Neutral"]: | |
question = retriever.get_response( | |
user_message, predicted_mental_category | |
) | |
st.session_state.asked_questions.append(question) | |
show_question = True | |
else: | |
show_question = False | |
question = "" | |
# predicted_mental_category = "" | |
# Update mood history / mood_trend | |
chatbot.update_mood_history() | |
mood_trend = chatbot.check_mood_trend() | |
# Define rewards | |
if user_sentiment in ["Positive", "Moderately Positive"]: | |
if mood_trend == "increased": | |
reward = +1 | |
mood_trend_symbol = " ⬆️" | |
elif mood_trend == "unchanged": | |
reward = +0.8 | |
mood_trend_symbol = "" | |
else: # decreased | |
reward = -0.2 | |
mood_trend_symbol = " ⬇️" | |
else: | |
if mood_trend == "increased": | |
reward = +1 | |
mood_trend_symbol = " ⬆️" | |
elif mood_trend == "unchanged": | |
reward = -0.2 | |
mood_trend_symbol = "" | |
else: # decreased | |
reward = -1 | |
mood_trend_symbol = " ⬇️" | |
print( | |
f"mood_trend - sentiment - reward: {mood_trend} - {user_sentiment} - 🛑{reward}🛑" | |
) | |
# Update Q-values | |
chatbot.update_q_values( | |
user_sentiment, chatbot.actions[0], reward, user_sentiment | |
) | |
# Get recommended action based on the updated Q-values | |
ai_tone = chatbot.get_action(user_sentiment) | |
print(ai_tone) | |
print(st.session_state.messages) | |
# LLM Response Generator | |
load_dotenv(find_dotenv()) | |
llm_model = LLLResponseGenerator() | |
temperature = 0.5 | |
max_length = None #128 * 4 | |
# Collect all messages exchanged so far into a single text string | |
all_messages = "\n".join( | |
[message.get("content") for message in st.session_state.messages] | |
) | |
# Question asked to the user: {question} | |
template = """INSTRUCTIONS: {context} | |
Respond to the user with a tone of {ai_tone}. | |
Response by the user: {user_text} | |
Response; | |
""" | |
context = f"You are a mental health supporting non-medical assistant. Provide brief advice. DO NOT ASK ANY QUESTION. DO NOT REPEAT YOURSELF. {all_messages}" # and ask a relevant question back to the user | |
# context = f"You are a Mindful Media Mentor, dedicated to providing compassionate support and guidance to users facing mental health challenges. Your goal is to foster a safe and understanding environment where users feel heard and supported. Draw from your expertise to offer practical advice and resources, and encourage users to explore their feelings and experiences openly. Your responses should aim to empower users to take positive steps towards their well-being. {all_messages}" | |
llm_response = llm_model.llm_inference( | |
model_type="huggingface", | |
question=question, | |
prompt_template=template, | |
context=context, | |
ai_tone=ai_tone, | |
questionnaire=predicted_mental_category, | |
user_text=user_message, | |
temperature=temperature, | |
max_length=max_length, | |
) | |
llm_response = remove_html_tags(llm_response) | |
if show_question: | |
llm_reponse_with_quesiton = f"{llm_response}\n\n{question}" | |
else: | |
llm_reponse_with_quesiton = llm_response | |
# Append the user and AI responses to the chat history | |
st.session_state.messages.append( | |
{"role": "ai", "content": llm_reponse_with_quesiton} | |
) | |
with st.chat_message("ai"): | |
st.markdown(llm_reponse_with_quesiton) | |
# st.write(f"{llm_response}") | |
# if show_question: | |
# st.write(f"{question}") | |
# else: | |
# user doesn't feel negative. | |
# get question to ecourage even more positive behaviour | |
# Update data to memory | |
st.session_state.user_sentiment = user_sentiment | |
st.session_state.mood_trend = mood_trend | |
st.session_state.predicted_mental_category = predicted_mental_category | |
st.session_state.ai_tone = ai_tone | |
st.session_state.mood_trend_symbol = mood_trend_symbol | |
st.session_state.show_question = show_question | |
#if input_mode == "Speech": | |
# Convert the response to speech | |
speech_fp = text_to_speech(llm_reponse_with_quesiton) | |
# Play the speech | |
st.audio(speech_fp, format="audio/mp3") | |
# Show/hide "Behind the Scene" section | |
# section_visible = st.sidebar.button('Show/Hide Behind the Scene') | |
with st.sidebar.expander("Behind the Scene", expanded=section_visible): | |
st.subheader("What AI is doing:") | |
# Use the values stored in session state | |
st.write( | |
f"- Detected User Tone: {st.session_state.user_sentiment} ({st.session_state.mood_trend.capitalize()}{st.session_state.mood_trend_symbol})" | |
) | |
if st.session_state.show_question: | |
st.write( | |
f"- Possible Mental Condition: {st.session_state.predicted_mental_category.capitalize()}" | |
) | |
st.write(f"- AI Tone: {st.session_state.ai_tone.capitalize()}") | |
# Display Q-table | |
st.dataframe(display_q_table(chatbot.q_values, states, actions)) | |
st.write("-----------------------") | |
st.write( | |
f"- Above q-table is continuously updated after each interaction with the user. If the user's mood increases, AI gets a reward. Else, AI gets a punishment." | |
) | |
st.write(f"- Question retrieved from: {selected_retriever_option}") | |
st.write( | |
f"- If the user feels negative, moderately negative, or neutral, at the end of the AI response, it adds a mental health condition related question. The question is retrieved from DB. The categories of questions are limited to Depression, Anxiety, ADHD, Social Media Addiction, Social Isolation, and Cyberbullying which are most associated with FOMO related to excessive social media usage." | |
) |