Spaces:
Sleeping
Sleeping
### | |
# - Author: Jaelin Lee, Abhishek Dutta | |
# - Date: Mar 23, 2024 | |
# - Description: Streamlit UI for mental health support chatbot using sentiment analsys, RL, BM25/ChromaDB, and LLM. | |
# - Note: | |
# - Updated to UI to show predicted mental health condition in behind the scence regardless of the ositive/negative sentiment | |
### | |
from dotenv import load_dotenv, find_dotenv | |
import pandas as pd | |
import streamlit as st | |
from q_learning_chatbot import QLearningChatbot | |
from xgb_mental_health import MentalHealthClassifier | |
from bm25_retreive_question import QuestionRetriever as QuestionRetriever_bm25 | |
from Chromadb_storage_JyotiNigam import QuestionRetriever as QuestionRetriever_chromaDB | |
from llm_response_generator import LLLResponseGenerator | |
import os | |
from llama_guard import moderate_chat | |
# Streamlit UI | |
st.title("MindfulMedia Mentor") | |
# Define states and actions | |
states = [ | |
"Negative", | |
"Moderately Negative", | |
"Neutral", | |
"Moderately Positive", | |
"Positive", | |
] | |
actions = ["encouragement", "empathy", "spiritual"] | |
# Initialize Q-learning chatbot and mental health classifier | |
chatbot = QLearningChatbot(states, actions) | |
# Initialize MentalHealthClassifier | |
# data_path = "/Users/jaelinlee/Documents/projects/fomo/input/data.csv" | |
data_path = os.path.join("data", "data.csv") | |
print(data_path) | |
tokenizer_model_name = "nlptown/bert-base-multilingual-uncased-sentiment" | |
mental_classifier_model_path = "mental_health_model.pkl" | |
mental_classifier = MentalHealthClassifier(data_path, mental_classifier_model_path) | |
# Function to display Q-table | |
def display_q_table(q_values, states, actions): | |
q_table_dict = {"State": states} | |
for i, action in enumerate(actions): | |
q_table_dict[action] = q_values[:, i] | |
q_table_df = pd.DataFrame(q_table_dict) | |
return q_table_df | |
# Initialize memory | |
if "entered_text" not in st.session_state: | |
st.session_state.entered_text = [] | |
if "entered_mood" not in st.session_state: | |
st.session_state.entered_mood = [] | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "user_sentiment" not in st.session_state: | |
st.session_state.user_sentiment = "Neutral" | |
if "mood_trend" not in st.session_state: | |
st.session_state.mood_trend = "Unchanged" | |
if "predicted_mental_category" not in st.session_state: | |
st.session_state.predicted_mental_category = "" | |
if "ai_tone" not in st.session_state: | |
st.session_state.ai_tone = "Empathy" | |
if "mood_trend_symbol" not in st.session_state: | |
st.session_state.mood_trend_symbol = "" | |
if "show_question" not in st.session_state: | |
st.session_state.show_question = False | |
if "asked_questions" not in st.session_state: | |
st.session_state.asked_questions = [] | |
# Check if 'llama_guard_enabled' is already in session state, otherwise initialize it | |
if "llama_guard_enabled" not in st.session_state: | |
st.session_state["llama_guard_enabled"] = False # Default value to False | |
# Select Question Retriever | |
selected_retriever_option = st.sidebar.selectbox( | |
"Choose Question Retriever", ("BM25", "ChromaDB") | |
) | |
if selected_retriever_option == "BM25": | |
retriever = QuestionRetriever_bm25() | |
if selected_retriever_option == "ChromaDB": | |
retriever = QuestionRetriever_chromaDB() | |
for message in st.session_state.messages: | |
with st.chat_message(message.get("role")): | |
st.write(message.get("content")) | |
section_visible = True | |
# Collect user input | |
user_message = st.chat_input("Type your message here:") | |
# Modify the checkbox call to include a unique key parameter | |
llama_guard_enabled = st.sidebar.checkbox( | |
"Enable LlamaGuard", | |
value=st.session_state["llama_guard_enabled"], | |
key="llama_guard_toggle", | |
) | |
# Update the session state based on the checkbox interaction | |
st.session_state["llama_guard_enabled"] = llama_guard_enabled | |
# Take user input | |
if user_message: | |
st.session_state.entered_text.append(user_message) | |
st.session_state.messages.append({"role": "user", "content": user_message}) | |
with st.chat_message("user"): | |
st.write(user_message) | |
is_safe = True | |
if st.session_state["llama_guard_enabled"]: | |
chat = [ | |
{"role": "user", "content": user_message}, | |
{"role": "assistant", "content": ""}, | |
] | |
guard_status = moderate_chat(chat) | |
if "unsafe" in guard_status[0]["generated_text"]: | |
is_safe = False | |
print("Guard status", guard_status) | |
if is_safe == False: | |
response = "Due to eithical and safety reasons, I can't provide the help you need. Please reach out to someone who can, like a family member, friend, or therapist. In urgent situations, contact emergency services or a crisis hotline. Remember, asking for help is brave, and you're not alone." | |
st.session_state.messages.append({"role": "ai", "content": response}) | |
with st.chat_message("ai"): | |
st.markdown(response) | |
else: | |
# Detect mental condition | |
with st.spinner("Processing..."): | |
mental_classifier.initialize_tokenizer(tokenizer_model_name) | |
mental_classifier.preprocess_data() | |
predicted_mental_category = mental_classifier.predict_category(user_message) | |
print("Predicted mental health condition:", predicted_mental_category) | |
# Detect sentiment | |
user_sentiment = chatbot.detect_sentiment(user_message) | |
# Retrieve question | |
if user_sentiment in ["Negative", "Moderately Negative", "Neutral"]: | |
question = retriever.get_response( | |
user_message, predicted_mental_category | |
) | |
show_question = True | |
else: | |
show_question = False | |
question = "" | |
# predicted_mental_category = "" | |
# Update mood history / mood_trend | |
chatbot.update_mood_history() | |
mood_trend = chatbot.check_mood_trend() | |
# Define rewards | |
if user_sentiment in ["Positive", "Moderately Positive"]: | |
if mood_trend == "increased": | |
reward = +1 | |
mood_trend_symbol = " ⬆️" | |
elif mood_trend == "unchanged": | |
reward = +0.8 | |
mood_trend_symbol = "" | |
else: # decreased | |
reward = -0.2 | |
mood_trend_symbol = " ⬇️" | |
else: | |
if mood_trend == "increased": | |
reward = +1 | |
mood_trend_symbol = " ⬆️" | |
elif mood_trend == "unchanged": | |
reward = -0.2 | |
mood_trend_symbol = "" | |
else: # decreased | |
reward = -1 | |
mood_trend_symbol = " ⬇️" | |
print( | |
f"mood_trend - sentiment - reward: {mood_trend} - {user_sentiment} - 🛑{reward}🛑" | |
) | |
# Update Q-values | |
chatbot.update_q_values( | |
user_sentiment, chatbot.actions[0], reward, user_sentiment | |
) | |
# Get recommended action based on the updated Q-values | |
ai_tone = chatbot.get_action(user_sentiment) | |
print(ai_tone) | |
print(st.session_state.messages) | |
# LLM Response Generator | |
load_dotenv(find_dotenv()) | |
llm_model = LLLResponseGenerator() | |
temperature = 0.5 | |
max_length = 128 | |
# Collect all messages exchanged so far into a single text string | |
all_messages = "\n".join( | |
[message.get("content") for message in st.session_state.messages] | |
) | |
# Question asked to the user: {question} | |
template = """INSTRUCTIONS: {context} | |
Respond to the user with a tone of {ai_tone}. | |
Response by the user: {user_text} | |
Response; | |
""" | |
context = f"You are a mental health supporting non-medical assistant. Provide some advice and ask a relevant question back to the user. {all_messages}" | |
llm_response = llm_model.llm_inference( | |
model_type="huggingface", | |
question=question, | |
prompt_template=template, | |
context=context, | |
ai_tone=ai_tone, | |
questionnaire=predicted_mental_category, | |
user_text=user_message, | |
temperature=temperature, | |
max_length=max_length, | |
) | |
if show_question: | |
llm_reponse_with_quesiton = f"{llm_response}\n\n{question}" | |
else: | |
llm_reponse_with_quesiton = llm_response | |
# Append the user and AI responses to the chat history | |
st.session_state.messages.append( | |
{"role": "ai", "content": llm_reponse_with_quesiton} | |
) | |
with st.chat_message("ai"): | |
st.markdown(llm_reponse_with_quesiton) | |
# st.write(f"{llm_response}") | |
# if show_question: | |
# st.write(f"{question}") | |
# else: | |
# user doesn't feel negative. | |
# get question to ecourage even more positive behaviour | |
# Update data to memory | |
st.session_state.user_sentiment = user_sentiment | |
st.session_state.mood_trend = mood_trend | |
st.session_state.predicted_mental_category = predicted_mental_category | |
st.session_state.ai_tone = ai_tone | |
st.session_state.mood_trend_symbol = mood_trend_symbol | |
st.session_state.show_question = show_question | |
# Show/hide "Behind the Scene" section | |
# section_visible = st.sidebar.button('Show/Hide Behind the Scene') | |
with st.sidebar.expander("Behind the Scene", expanded=section_visible): | |
st.subheader("What AI is doing:") | |
# Use the values stored in session state | |
st.write( | |
f"- Detected User Tone: {st.session_state.user_sentiment} ({st.session_state.mood_trend.capitalize()}{st.session_state.mood_trend_symbol})" | |
) | |
# if st.session_state.show_question: | |
st.write( | |
f"- Possible Mental Condition: {st.session_state.predicted_mental_category.capitalize()}" | |
) | |
st.write(f"- AI Tone: {st.session_state.ai_tone.capitalize()}") | |
st.write(f"- Question retrieved from: {selected_retriever_option}") | |
st.write( | |
f"- If the user feels negative, moderately negative, or neutral, at the end of the AI response, it adds a mental health condition related question. The question is retrieved from DB. The categories of questions are limited to Depression, Anxiety, ADHD, Social Media Addiction, Social Isolation, and Cyberbullying which are most associated with FOMO related to excessive social media usage." | |
) | |
st.write( | |
f"- Below q-table is continuously updated after each interaction with the user. If the user's mood increases, AI gets a reward. Else, AI gets a punishment." | |
) | |
# Display Q-table | |
st.dataframe(display_q_table(chatbot.q_values, states, actions)) | |