Spaces:
Runtime error
Runtime error
Olivia Figueira
commited on
Commit
•
b6e5241
1
Parent(s):
090a2ed
Upload code with streamlit addition
Browse files- LICENSE +21 -0
- README.md +1 -1
- critic/PIE/__pycache__/word_level_perturb.cpython-37.pyc +0 -0
- critic/PIE/__pycache__/word_level_perturb.cpython-38.pyc +0 -0
- critic/PIE/word_level_perturb.py +237 -0
- critic/__init__.py +0 -0
- critic/__pycache__/__init__.cpython-37.pyc +0 -0
- critic/__pycache__/__init__.cpython-38.pyc +0 -0
- critic/__pycache__/critic.cpython-37.pyc +0 -0
- critic/__pycache__/critic.cpython-38.pyc +0 -0
- critic/__pycache__/edit_dist_utils.cpython-38.pyc +0 -0
- critic/__pycache__/perturbations.cpython-38.pyc +0 -0
- critic/common_typo.json +0 -0
- critic/critic.py +157 -0
- critic/edit_dist_utils.py +139 -0
- critic/perturbations.py +144 -0
- eval_critic/eval_critic.py +114 -0
- eval_critic/eval_data.jsonl +0 -0
- gec/download_data.sh +43 -0
- gec/scripts/get_corr_from_m2.py +35 -0
- gec/scripts/get_orig_from_m2.py +22 -0
- gec/scripts/parse_errant_output.py +11 -0
- gec/scripts/parse_m2_output.py +11 -0
- gec/src/run-round0.sh +77 -0
- gec/src/run-round1.sh +75 -0
- gec/src/run_fixer.py +87 -0
- gec/src/run_seq2seq.py +537 -0
- requirements.txt +9 -0
- utils/__pycache__/spacy_tokenizer.cpython-38.pyc +0 -0
- utils/__pycache__/text_utils.cpython-37.pyc +0 -0
- utils/__pycache__/text_utils.cpython-38.pyc +0 -0
- utils/spacy_tokenizer.py +62 -0
- utils/text_utils.py +65 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Michihiro Yasunaga
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: pink
|
|
5 |
colorTo: gray
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.2.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
license: afl-3.0
|
11 |
---
|
|
|
5 |
colorTo: gray
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.2.0
|
8 |
+
app_file: critic/critic.py
|
9 |
pinned: false
|
10 |
license: afl-3.0
|
11 |
---
|
critic/PIE/__pycache__/word_level_perturb.cpython-37.pyc
ADDED
Binary file (9.64 kB). View file
|
|
critic/PIE/__pycache__/word_level_perturb.cpython-38.pyc
ADDED
Binary file (7.8 kB). View file
|
|
critic/PIE/word_level_perturb.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Word-level perturbation generator.
|
3 |
+
|
4 |
+
Originally by https://github.com/awasthiabhijeet/PIE/tree/master/errorify
|
5 |
+
"""
|
6 |
+
import os
|
7 |
+
import math
|
8 |
+
import pickle
|
9 |
+
import random
|
10 |
+
import editdistance
|
11 |
+
from numpy.random import choice as npchoice
|
12 |
+
from collections import defaultdict
|
13 |
+
|
14 |
+
|
15 |
+
try:
|
16 |
+
dir_path = os.path.dirname(os.path.realpath(__file__))
|
17 |
+
except:
|
18 |
+
dir_path = '.'
|
19 |
+
|
20 |
+
VERBS = pickle.load(open(f'{dir_path}/verbs.p', 'rb'))
|
21 |
+
COMMON_INSERTS = set(pickle.load(open(f'{dir_path}/common_inserts.p', 'rb'))) #common inserts *to fix a sent*
|
22 |
+
COMMON_DELETES = pickle.load(open(f'{dir_path}/common_deletes.p','rb')) #common deletes *to fix a sent*
|
23 |
+
_COMMON_REPLACES = pickle.load(open(f'{dir_path}/common_replaces.p', 'rb')) #common replacements *to errorify a sent*
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
COMMON_REPLACES = {}
|
28 |
+
for src in _COMMON_REPLACES:
|
29 |
+
for tgt in _COMMON_REPLACES[src]:
|
30 |
+
if (src=="'re" and tgt=="are") or (tgt=="'re" and src=="are"):
|
31 |
+
continue
|
32 |
+
ED = editdistance.eval(tgt, src)
|
33 |
+
if ED > 2:
|
34 |
+
continue
|
35 |
+
longer = max(len(src), len(tgt))
|
36 |
+
if float(ED)/longer >= 0.5:
|
37 |
+
continue
|
38 |
+
if tgt not in COMMON_REPLACES:
|
39 |
+
COMMON_REPLACES[tgt] = {}
|
40 |
+
COMMON_REPLACES[tgt][src] = _COMMON_REPLACES[src][tgt]
|
41 |
+
|
42 |
+
|
43 |
+
VERBS_refine = defaultdict(list)
|
44 |
+
for src in VERBS:
|
45 |
+
for tgt in VERBS[src]:
|
46 |
+
ED = editdistance.eval(tgt, src)
|
47 |
+
if ED > 2:
|
48 |
+
continue
|
49 |
+
longer = max(len(src), len(tgt))
|
50 |
+
if float(ED)/longer >= 0.5:
|
51 |
+
continue
|
52 |
+
VERBS_refine[src].append(tgt)
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
class WordLevelPerturber_all:
|
57 |
+
def __init__(self, sentence: str):
|
58 |
+
self.original_sentence = sentence.rstrip()
|
59 |
+
self.sentence = self.original_sentence
|
60 |
+
self.tokenized = None
|
61 |
+
self.tokenize()
|
62 |
+
|
63 |
+
def tokenize(self):
|
64 |
+
self.tokenized = self.sentence.split()
|
65 |
+
|
66 |
+
def orig(self):
|
67 |
+
return self.original_sentence
|
68 |
+
|
69 |
+
def _insert(self):
|
70 |
+
"""Insert a commonly deleted word."""
|
71 |
+
if len(self.tokenized) > 0:
|
72 |
+
insertable = list(range(len(self.tokenized)))
|
73 |
+
index = random.choice(insertable)
|
74 |
+
plist = list(COMMON_DELETES.values())
|
75 |
+
plistsum = sum(plist)
|
76 |
+
plist = [x / plistsum for x in plist]
|
77 |
+
# Choose a word
|
78 |
+
ins_word = npchoice(list(COMMON_DELETES.keys()), p=plist)
|
79 |
+
self.tokenized.insert(index,ins_word)
|
80 |
+
return ' '.join(self.tokenized)
|
81 |
+
|
82 |
+
def _mod_verb(self, redir=True):
|
83 |
+
if len(self.tokenized) > 0:
|
84 |
+
verbs = [i for i, w in enumerate(self.tokenized) if w in VERBS]
|
85 |
+
if not verbs:
|
86 |
+
if redir:
|
87 |
+
return self._replace(redir=False)
|
88 |
+
return self.sentence
|
89 |
+
index = random.choice(verbs)
|
90 |
+
word = self.tokenized[index]
|
91 |
+
if not VERBS[word]:
|
92 |
+
return self.sentence
|
93 |
+
repl = random.choice(VERBS[word])
|
94 |
+
self.tokenized[index] = repl
|
95 |
+
return ' '.join(self.tokenized)
|
96 |
+
|
97 |
+
def _delete(self):
|
98 |
+
"""Delete a commonly inserted word."""
|
99 |
+
if len(self.tokenized) > 1:
|
100 |
+
toks_len = len(self.tokenized)
|
101 |
+
toks = self.tokenized
|
102 |
+
deletable = [i for i, w in enumerate(toks) if w in COMMON_INSERTS]
|
103 |
+
if not deletable:
|
104 |
+
return self.sentence
|
105 |
+
index = random.choice(deletable)
|
106 |
+
del self.tokenized[index]
|
107 |
+
return ' '.join(self.tokenized)
|
108 |
+
|
109 |
+
def _replace(self, redir=True):
|
110 |
+
if len(self.tokenized) > 0:
|
111 |
+
deletable = [i for i, w in enumerate(self.tokenized) if (w in COMMON_REPLACES)]
|
112 |
+
if not deletable:
|
113 |
+
if redir:
|
114 |
+
return self._mod_verb(redir=False)
|
115 |
+
return self.sentence
|
116 |
+
index = random.choice(deletable)
|
117 |
+
word = self.tokenized[index]
|
118 |
+
if not COMMON_REPLACES[word]:
|
119 |
+
return self.sentence
|
120 |
+
# Normalize probabilities
|
121 |
+
plist = list(COMMON_REPLACES[word].values())
|
122 |
+
plistsum = sum(plist)
|
123 |
+
plist = [x / plistsum for x in plist]
|
124 |
+
# Choose a word
|
125 |
+
repl = npchoice(list(COMMON_REPLACES[word].keys()), p=plist)
|
126 |
+
self.tokenized[index] = repl
|
127 |
+
return ' '.join(self.tokenized)
|
128 |
+
|
129 |
+
def perturb(self):
|
130 |
+
count = 1
|
131 |
+
orig_sent = self.sentence
|
132 |
+
for x in range(count):
|
133 |
+
perturb_probs = [.30,.30,.30,.10]
|
134 |
+
perturb_fun = npchoice([self._insert, self._mod_verb, self._replace, self._delete],p=perturb_probs)
|
135 |
+
self.sentence = perturb_fun()
|
136 |
+
self.tokenize()
|
137 |
+
res_sentence = self.sentence
|
138 |
+
self.sentence = self.original_sentence
|
139 |
+
self.tokenize()
|
140 |
+
return res_sentence
|
141 |
+
|
142 |
+
|
143 |
+
class WordLevelPerturber_refine:
|
144 |
+
def __init__(self, sentence: str):
|
145 |
+
self.original_sentence = sentence.rstrip()
|
146 |
+
self.sentence = self.original_sentence
|
147 |
+
self.tokenized = None
|
148 |
+
self.tokenize()
|
149 |
+
|
150 |
+
def tokenize(self):
|
151 |
+
self.tokenized = self.sentence.split()
|
152 |
+
|
153 |
+
def orig(self):
|
154 |
+
return self.original_sentence
|
155 |
+
|
156 |
+
def _insert(self):
|
157 |
+
"""Insert a commonly deleted word."""
|
158 |
+
if len(self.tokenized) > 0:
|
159 |
+
insertable = list(range(len(self.tokenized)))
|
160 |
+
index = random.choice(insertable)
|
161 |
+
plist = list(COMMON_DELETES.values())
|
162 |
+
plistsum = sum(plist)
|
163 |
+
plist = [x / plistsum for x in plist]
|
164 |
+
# Choose a word
|
165 |
+
ins_word = npchoice(list(COMMON_DELETES.keys()), p=plist)
|
166 |
+
self.tokenized.insert(index,ins_word)
|
167 |
+
return ' '.join(self.tokenized)
|
168 |
+
|
169 |
+
def _mod_verb(self, redir=True):
|
170 |
+
if len(self.tokenized) > 0:
|
171 |
+
verbs = [i for i, w in enumerate(self.tokenized) if w in VERBS_refine]
|
172 |
+
if not verbs:
|
173 |
+
if redir:
|
174 |
+
return self._replace(redir=False)
|
175 |
+
return self.sentence
|
176 |
+
index = random.choice(verbs)
|
177 |
+
word = self.tokenized[index]
|
178 |
+
if not VERBS_refine[word]:
|
179 |
+
return self.sentence
|
180 |
+
repl = random.choice(VERBS_refine[word])
|
181 |
+
self.tokenized[index] = repl
|
182 |
+
|
183 |
+
return ' '.join(self.tokenized)
|
184 |
+
|
185 |
+
def _delete(self):
|
186 |
+
"""Delete a commonly inserted word."""
|
187 |
+
if len(self.tokenized) > 1:
|
188 |
+
toks_len = len(self.tokenized)
|
189 |
+
toks = self.tokenized
|
190 |
+
deletable = [i for i, w in enumerate(toks) if (w in COMMON_INSERTS) and (i>0 and toks[i-1].lower() == toks[i].lower())]
|
191 |
+
if not deletable:
|
192 |
+
return self.sentence
|
193 |
+
index = random.choice(deletable)
|
194 |
+
del self.tokenized[index]
|
195 |
+
return ' '.join(self.tokenized)
|
196 |
+
|
197 |
+
def _replace(self, redir=True):
|
198 |
+
def _keep(i,w):
|
199 |
+
if w.lower() in {"not", "n't"}:
|
200 |
+
return True
|
201 |
+
return False
|
202 |
+
|
203 |
+
if len(self.tokenized) > 0:
|
204 |
+
deletable = [i for i, w in enumerate(self.tokenized) if (w in COMMON_REPLACES) and (not _keep(i,w))]
|
205 |
+
if not deletable:
|
206 |
+
if redir:
|
207 |
+
return self._mod_verb(redir=False)
|
208 |
+
return self.sentence
|
209 |
+
|
210 |
+
index = random.choice(deletable)
|
211 |
+
word = self.tokenized[index]
|
212 |
+
if not COMMON_REPLACES[word]:
|
213 |
+
return self.sentence
|
214 |
+
|
215 |
+
# Normalize probabilities
|
216 |
+
plist = list(COMMON_REPLACES[word].values())
|
217 |
+
plistsum = sum(plist)
|
218 |
+
plist = [x / plistsum for x in plist]
|
219 |
+
|
220 |
+
# Choose a word
|
221 |
+
repl = npchoice(list(COMMON_REPLACES[word].keys()), p=plist)
|
222 |
+
self.tokenized[index] = repl
|
223 |
+
|
224 |
+
return ' '.join(self.tokenized)
|
225 |
+
|
226 |
+
def perturb(self):
|
227 |
+
count = 1
|
228 |
+
orig_sent = self.sentence
|
229 |
+
for x in range(count):
|
230 |
+
perturb_probs = [.30,.30,.30,.10]
|
231 |
+
perturb_fun = npchoice([self._insert, self._mod_verb, self._replace, self._delete],p=perturb_probs)
|
232 |
+
self.sentence = perturb_fun()
|
233 |
+
self.tokenize()
|
234 |
+
res_sentence = self.sentence
|
235 |
+
self.sentence = self.original_sentence
|
236 |
+
self.tokenize()
|
237 |
+
return res_sentence
|
critic/__init__.py
ADDED
File without changes
|
critic/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (146 Bytes). View file
|
|
critic/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (142 Bytes). View file
|
|
critic/__pycache__/critic.cpython-37.pyc
ADDED
Binary file (5.46 kB). View file
|
|
critic/__pycache__/critic.cpython-38.pyc
ADDED
Binary file (4.26 kB). View file
|
|
critic/__pycache__/edit_dist_utils.cpython-38.pyc
ADDED
Binary file (4.62 kB). View file
|
|
critic/__pycache__/perturbations.cpython-38.pyc
ADDED
Binary file (4.55 kB). View file
|
|
critic/common_typo.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
critic/critic.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
import hashlib
|
5 |
+
import numpy as np
|
6 |
+
from tqdm import tqdm
|
7 |
+
from transformers import GPT2Tokenizer, GPT2Model, GPT2LMHeadModel
|
8 |
+
import nltk
|
9 |
+
nltk.download('punkt')
|
10 |
+
|
11 |
+
sys.path.insert(0, '.')
|
12 |
+
from critic.perturbations import get_local_neighbors_char_level, get_local_neighbors_word_level
|
13 |
+
from utils.spacy_tokenizer import spacy_tokenize_gec
|
14 |
+
|
15 |
+
model_name = 'gpt2'
|
16 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
17 |
+
tokenizer.pad_token = tokenizer.eos_token
|
18 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
19 |
+
model.eval()
|
20 |
+
#model.cuda()
|
21 |
+
model.cpu()
|
22 |
+
print (f'Loaded {model_name}')
|
23 |
+
|
24 |
+
|
25 |
+
def get_gpt2_loss(input_ids, attention_mask, labels):
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
28 |
+
lm_logits = outputs[1] #[bsize, seqlen, vocab]
|
29 |
+
if labels is not None:
|
30 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
31 |
+
shift_labels = labels[..., 1:].contiguous()
|
32 |
+
shift_mask = attention_mask[..., 1:].contiguous()
|
33 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction='none')
|
34 |
+
bsize, seqlen = input_ids.size()
|
35 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)).view(bsize, seqlen-1)
|
36 |
+
loss = (loss * shift_mask).sum(dim=1) #[bsize, ]
|
37 |
+
return loss
|
38 |
+
|
39 |
+
|
40 |
+
MAX_LENGTH = 66
|
41 |
+
|
42 |
+
def run_gpt2(sents, cuda=False, model_name=None):
|
43 |
+
assert isinstance(sents, list)
|
44 |
+
_sents = [tokenizer.bos_token + s for s in sents]
|
45 |
+
inputs = tokenizer(_sents, return_tensors="pt", padding=True)
|
46 |
+
if inputs['input_ids'].size(1) > MAX_LENGTH:
|
47 |
+
return None
|
48 |
+
if cuda:
|
49 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
50 |
+
loss = get_gpt2_loss(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], labels=inputs['input_ids'])
|
51 |
+
logps = - loss.detach().cpu()
|
52 |
+
return logps
|
53 |
+
|
54 |
+
|
55 |
+
def gpt2_critic_char_level_only(sent, verbose=1, cuda=False, fp16=True, seed='auto', n_samples=100):
|
56 |
+
return_string = []
|
57 |
+
if seed == 'auto':
|
58 |
+
seed = int(hashlib.md5(sent.encode()).hexdigest(), 16) % (2**32) #Seed must be between 0 and 2**32 - 1
|
59 |
+
if verbose > 1:
|
60 |
+
print ('seed', seed)
|
61 |
+
np.random.seed(seed); random.seed(seed)
|
62 |
+
is_good = True
|
63 |
+
for _ in range(1):
|
64 |
+
sent_perturbations = get_local_neighbors_char_level(sent, max_n_samples=n_samples)
|
65 |
+
if verbose > 1:
|
66 |
+
print ("#sent_perturbations (char-level)", len(sent_perturbations))
|
67 |
+
return_string.append(f"#sent_perturbations (char-level){len(sent_perturbations)}\n")
|
68 |
+
sents = [sent] + list(sent_perturbations)
|
69 |
+
if fp16:
|
70 |
+
with torch.cuda.amp.autocast():
|
71 |
+
logps = run_gpt2(sents, cuda)
|
72 |
+
else:
|
73 |
+
logps = run_gpt2(sents, cuda)
|
74 |
+
if logps is None:
|
75 |
+
if verbose:
|
76 |
+
print ('Invalid input. Maybe the sentence is too long.')
|
77 |
+
return_string.append('Invalid input. Maybe the sentence is too long.\n')
|
78 |
+
return None
|
79 |
+
best_idx = int(logps.argmax())
|
80 |
+
if best_idx != 0:
|
81 |
+
is_good = False
|
82 |
+
break
|
83 |
+
if verbose:
|
84 |
+
if is_good:
|
85 |
+
print ('Good! Your sentence log(p) = {:.3f}'.format(float(logps[0])))
|
86 |
+
return_string.append('Good! Your sentence log(p) = {:.3f}\n'.format(float(logps[0])))
|
87 |
+
else:
|
88 |
+
print ('Bad! Your sentence log(p) = {:.3f}'.format(float(logps[0])))
|
89 |
+
return_string.append('Bad! Your sentence log(p) = {:.3f}\n'.format(float(logps[0])))
|
90 |
+
print ('Neighbor sentence with highest log(p): {} (= {:.3f})'.format(sents[best_idx], float(logps[best_idx])))
|
91 |
+
return_string.append('Neighbor sentence with highest log(p): {} (= {:.3f})\n'.format(sents[best_idx], float(logps[best_idx])))
|
92 |
+
counter_example = None
|
93 |
+
if not is_good:
|
94 |
+
counter_example = [sents[best_idx], float(logps[best_idx])]
|
95 |
+
return is_good, float(logps[0]), counter_example
|
96 |
+
|
97 |
+
|
98 |
+
def gpt2_critic(sent, verbose=1, cuda=False, fp16=True, seed='auto', n_samples=100, word_level_mode='refine'):
|
99 |
+
return_string = []
|
100 |
+
if seed == 'auto':
|
101 |
+
seed = int(hashlib.md5(sent.encode()).hexdigest(), 16) % (2**32) #Seed must be between 0 and 2**32 - 1
|
102 |
+
if verbose > 1:
|
103 |
+
print ('seed', seed)
|
104 |
+
return_string.append(f'seed{seed}\n')
|
105 |
+
np.random.seed(seed); random.seed(seed)
|
106 |
+
sent_toked = spacy_tokenize_gec(sent)
|
107 |
+
is_good = True
|
108 |
+
for _ in range(1):
|
109 |
+
sent_perturbations_w, orig_sent = get_local_neighbors_word_level(sent_toked, max_n_samples=n_samples//2, mode=word_level_mode)
|
110 |
+
sent_perturbations_c = get_local_neighbors_char_level(orig_sent, max_n_samples=n_samples//2)
|
111 |
+
if verbose > 1:
|
112 |
+
print ("#sent_perturbations (char-level)", len(sent_perturbations_c))
|
113 |
+
return_string.append("#sent_perturbations (char-level)\n", len(sent_perturbations_c))
|
114 |
+
print ("#sent_perturbations (word-level)", len(sent_perturbations_w))
|
115 |
+
return_string.append("#sent_perturbations (word-level)\n", len(sent_perturbations_w))
|
116 |
+
sents = [orig_sent] + list(sent_perturbations_c.union(sent_perturbations_w))
|
117 |
+
if fp16:
|
118 |
+
with torch.cuda.amp.autocast():
|
119 |
+
logps = run_gpt2(sents, cuda)
|
120 |
+
else:
|
121 |
+
logps = run_gpt2(sents, cuda)
|
122 |
+
if logps is None:
|
123 |
+
if verbose:
|
124 |
+
print ('Invalid input. Maybe the sentence is too long.')
|
125 |
+
return_string.append('Invalid input. Maybe the sentence is too long.\n')
|
126 |
+
return None
|
127 |
+
best_idx = int(logps.argmax())
|
128 |
+
if best_idx != 0:
|
129 |
+
is_good = False
|
130 |
+
break
|
131 |
+
if verbose:
|
132 |
+
if is_good:
|
133 |
+
print ('Good! Your sentence log(p) = {:.3f}'.format(float(logps[0])))
|
134 |
+
return_string.append('Good! Your sentence log(p) = {:.3f}\n'.format(float(logps[0])))
|
135 |
+
else:
|
136 |
+
print ('Bad! Your sentence log(p) = {:.3f}'.format(float(logps[0])))
|
137 |
+
return_string.append('Bad! Your sentence log(p) = {:.3f}\n'.format(float(logps[0])))
|
138 |
+
print ('Neighbor sentence with highest log(p): {} (= {:.3f})'.format(sents[best_idx], float(logps[best_idx])))
|
139 |
+
return_string.append('Neighbor sentence with highest log(p): {} (= {:.3f})\n'.format(sents[best_idx], float(logps[best_idx])))
|
140 |
+
counter_example = None
|
141 |
+
if not is_good:
|
142 |
+
counter_example = [sents[best_idx], float(logps[best_idx])]
|
143 |
+
return is_good, float(logps[0]), counter_example, return_string
|
144 |
+
|
145 |
+
|
146 |
+
def main():
|
147 |
+
import streamlit as st
|
148 |
+
st.subheader('Exploring Unsupervised Grammatical Error Correction with Transformer-Based Models')
|
149 |
+
sent = st.text_input('Enter a sentence:', value="")
|
150 |
+
if sent != '':
|
151 |
+
st.markdown(f"**Sentence**: {sent}")
|
152 |
+
_,_,_,return_string = gpt2_critic(sent)
|
153 |
+
st.markdown("**Results:**")
|
154 |
+
st.write('\n'.join(return_string))
|
155 |
+
|
156 |
+
if __name__ == '__main__':
|
157 |
+
main()
|
critic/edit_dist_utils.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Edit distance utils...
|
3 |
+
|
4 |
+
Originally by https://worksheets.codalab.org/worksheets/0x8fc01c7fc2b742fdb29c05669f0ad7d2
|
5 |
+
"""
|
6 |
+
from collections import defaultdict
|
7 |
+
import numpy as np
|
8 |
+
import random
|
9 |
+
import string
|
10 |
+
from itertools import permutations
|
11 |
+
|
12 |
+
def process_filetype(filetype):
|
13 |
+
insert = (filetype // 1000) % 2 == 1
|
14 |
+
delete = (filetype // 100) % 2 == 1
|
15 |
+
substitute = (filetype // 10) % 2 == 1
|
16 |
+
swap = filetype % 2 == 1
|
17 |
+
return insert, delete, substitute, swap
|
18 |
+
|
19 |
+
def get_all_edit_dist_one(word, filetype = 1111, sub_restrict = None):
|
20 |
+
"""
|
21 |
+
Allowable edit_dist_one perturbations:
|
22 |
+
1. Insert any lowercase characer at any position other than the start
|
23 |
+
2. Delete any character other than the first one
|
24 |
+
3. Substitute any lowercase character for any other lowercase letter other than the start
|
25 |
+
4. Swap adjacent characters
|
26 |
+
We also include the original word. Filetype determines which of the allowable perturbations to use.
|
27 |
+
"""
|
28 |
+
insert, delete, substitute, swap = process_filetype(filetype)
|
29 |
+
#last_mod_pos is last thing you could insert before
|
30 |
+
last_mod_pos = len(word) #- 1
|
31 |
+
ed1 = set()
|
32 |
+
if len(word) <= 2 or word[:1].isupper() or word[:1].isnumeric():
|
33 |
+
return ed1
|
34 |
+
for pos in range(1, last_mod_pos + 1): #can add letters at the end
|
35 |
+
if delete and pos < last_mod_pos:
|
36 |
+
deletion = word[:pos] + word[pos + 1:]
|
37 |
+
ed1.add(deletion)
|
38 |
+
if swap and pos < last_mod_pos - 1:
|
39 |
+
#swapping thing at pos with thing at pos + 1
|
40 |
+
swaped = word[:pos] + word[pos + 1] + word[pos] + word[pos + 2:]
|
41 |
+
ed1.add(swaped)
|
42 |
+
for letter in string.ascii_lowercase: #+"'-": #no need to add '-, as we want to corrupt good to bad
|
43 |
+
if insert:
|
44 |
+
#Insert right after pos - 1
|
45 |
+
insertion = word[:pos] + letter + word[pos:]
|
46 |
+
ed1.add(insertion)
|
47 |
+
can_substitute = sub_restrict is None or letter in sub_restrict[word[pos]]
|
48 |
+
if substitute and pos < last_mod_pos and can_substitute:
|
49 |
+
substitution = word[:pos] + letter + word[pos + 1:]
|
50 |
+
ed1.add(substitution)
|
51 |
+
#Include original word
|
52 |
+
# ed1.add(word)
|
53 |
+
return ed1
|
54 |
+
|
55 |
+
def get_all_internal_permutations(word):
|
56 |
+
if len(word) > 10:
|
57 |
+
return set([word])
|
58 |
+
first_char = word[0]
|
59 |
+
last_char = word[-1]
|
60 |
+
internal_chars = word[1:-1]
|
61 |
+
internal_permutations = set()
|
62 |
+
for int_perm in permutations(internal_chars):
|
63 |
+
int_perm_str = ''.join(int_perm)
|
64 |
+
perm = '{}{}{}'.format(first_char, int_perm_str, last_char)
|
65 |
+
internal_permutations.add(perm)
|
66 |
+
return internal_permutations
|
67 |
+
|
68 |
+
def sample_random_internal_permutations(word, n_perts = 5):
|
69 |
+
#We try swapping everything with the second character...
|
70 |
+
if len(word) < 4:
|
71 |
+
return set([word])
|
72 |
+
#iterate through positions between second and last
|
73 |
+
perturbations = set()
|
74 |
+
start = word[0]
|
75 |
+
end = word[-1]
|
76 |
+
middle = word[1:-1]
|
77 |
+
for _ in range(n_perts):
|
78 |
+
middle_list = list(middle)
|
79 |
+
random.shuffle(middle_list)
|
80 |
+
mixed_up_middle = ''.join(middle_list)
|
81 |
+
perturbations.add('{}{}{}'.format(start, mixed_up_middle, end))
|
82 |
+
return perturbations
|
83 |
+
|
84 |
+
def get_sorted_word(word):
|
85 |
+
if len(word) < 3:
|
86 |
+
sorted_word = word
|
87 |
+
else:
|
88 |
+
sorted_word = '{}{}{}'.format(word[0], ''.join(sorted(word[1:-1])), word[-1])
|
89 |
+
return sorted_word
|
90 |
+
|
91 |
+
def get_sorted_word_set(word):
|
92 |
+
if len(word) < 3:
|
93 |
+
sorted_word = word
|
94 |
+
else:
|
95 |
+
sorted_word = '{}{}{}'.format(word[0], ''.join(sorted(word[1:-1])), word[-1])
|
96 |
+
return set([sorted_word])
|
97 |
+
|
98 |
+
|
99 |
+
#Used to create agglomerative clusters.
|
100 |
+
def preprocess_ed1_neighbors(vocab, sub_restrict = None, filetype = 1111):
|
101 |
+
vocab = set([word.lower() for word in vocab])
|
102 |
+
typo2words = defaultdict(set)
|
103 |
+
for word in vocab:
|
104 |
+
ed1_typos = get_all_edit_dist_one(word, filetype = filetype, sub_restrict = sub_restrict)
|
105 |
+
for typo in ed1_typos:
|
106 |
+
typo2words[typo].add(word)
|
107 |
+
|
108 |
+
word2neighbors = defaultdict(set)
|
109 |
+
for typo in typo2words:
|
110 |
+
for word in typo2words[typo]:
|
111 |
+
word2neighbors[word] = word2neighbors[word].union(typo2words[typo])
|
112 |
+
return word2neighbors
|
113 |
+
|
114 |
+
#Used to create agglomerative clusters.
|
115 |
+
def ed1_neighbors_mat(vocab, sub_restrict = None, filetype = 1111):
|
116 |
+
vocab = [word.lower() for word in vocab]
|
117 |
+
word2idx = dict([(word, i) for i, word in enumerate(vocab)])
|
118 |
+
word2neighbors = preprocess_ed1_neighbors(vocab, sub_restrict = sub_restrict, filetype = filetype)
|
119 |
+
edges = set()
|
120 |
+
for word in word2neighbors:
|
121 |
+
for neighbor in word2neighbors[word]:
|
122 |
+
edge = [word, neighbor]
|
123 |
+
edge.sort()
|
124 |
+
edge = tuple(edge)
|
125 |
+
edges.add(edge)
|
126 |
+
edge_mat = np.zeros((len(vocab), len(vocab)), dtype = int)
|
127 |
+
for edge in edges:
|
128 |
+
vtx1, vtx2 = edge
|
129 |
+
idx1, idx2 = word2idx[vtx1], word2idx[vtx2]
|
130 |
+
edge_mat[idx1][idx2] = 1
|
131 |
+
edge_mat[idx2][idx1] = 1
|
132 |
+
return edge_mat
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
if __name__ == '__main__':
|
137 |
+
while True:
|
138 |
+
word = input("Enter a word: ")
|
139 |
+
print("Total number of possible perturbations: {}".format(len(get_all_edit_dist_one(word))))
|
critic/perturbations.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Originally by https://worksheets.codalab.org/worksheets/0x8fc01c7fc2b742fdb29c05669f0ad7d2
|
3 |
+
"""
|
4 |
+
import json
|
5 |
+
import os, sys
|
6 |
+
import re
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
+
from random import sample
|
10 |
+
from tqdm import tqdm
|
11 |
+
from collections import Counter
|
12 |
+
|
13 |
+
from critic.edit_dist_utils import get_all_edit_dist_one, sample_random_internal_permutations
|
14 |
+
|
15 |
+
|
16 |
+
try:
|
17 |
+
dir_path = os.path.dirname(os.path.realpath(__file__))
|
18 |
+
except:
|
19 |
+
dir_path = '.'
|
20 |
+
common_typo = json.load(open(f"{dir_path}/common_typo.json"))
|
21 |
+
|
22 |
+
random.seed(1234)
|
23 |
+
np.random.seed(1234)
|
24 |
+
|
25 |
+
|
26 |
+
class RandomPerturbationAttack(object):
|
27 |
+
def __init__(self, attack_type = 'ed1'):
|
28 |
+
self.cache = {} #{word: {0: set(), 1: set(),.. }, ..} #0=swap, 1=substitute, 2=delete, 3=insert
|
29 |
+
self.n_types = 5
|
30 |
+
self.attack_type = attack_type
|
31 |
+
#
|
32 |
+
def sample_perturbations(self, word, n_samples, types):
|
33 |
+
if types is None:
|
34 |
+
type_list = list(range(4)) * (n_samples//4) + list(np.random.choice(self.n_types, n_samples % self.n_types, replace=False))
|
35 |
+
else:
|
36 |
+
type_list = [sample(types,1)[0] for _ in range(n_samples)]
|
37 |
+
type_count = Counter(type_list)
|
38 |
+
perturbations = set()
|
39 |
+
for type in type_count:
|
40 |
+
if type not in self.cache[word]:
|
41 |
+
continue
|
42 |
+
if len(self.cache[word][type]) >= type_count[type]:
|
43 |
+
perturbations.update(set(sample(self.cache[word][type], type_count[type])))
|
44 |
+
else:
|
45 |
+
perturbations.update(self.cache[word][type])
|
46 |
+
return perturbations
|
47 |
+
#
|
48 |
+
def get_perturbations(self, word, n_samples, types=None):
|
49 |
+
if word not in self.cache:
|
50 |
+
self.cache[word] = {}
|
51 |
+
if word[0].islower():
|
52 |
+
for type in range(4):
|
53 |
+
self.cache[word][type] = get_all_edit_dist_one(word, 10**type)
|
54 |
+
if word in common_typo:
|
55 |
+
self.cache[word][4] = set(common_typo[word])
|
56 |
+
elif word[0].isupper():
|
57 |
+
if word in common_typo:
|
58 |
+
self.cache[word][4] = set(common_typo[word])
|
59 |
+
if self.attack_type == 'ed1':
|
60 |
+
perturbations = self.sample_perturbations(word, n_samples, types)
|
61 |
+
else:
|
62 |
+
raise NotImplementedError("Attack type: {} not implemented yet".format(self.attack_type))
|
63 |
+
return perturbations
|
64 |
+
#
|
65 |
+
def name(self):
|
66 |
+
return 'RandomPerturbationAttack'
|
67 |
+
|
68 |
+
|
69 |
+
word_attack = RandomPerturbationAttack()
|
70 |
+
|
71 |
+
|
72 |
+
def _tokenize(sent):
|
73 |
+
toks = []
|
74 |
+
word_idxs = []
|
75 |
+
for idx, match in enumerate(re.finditer(r'([a-zA-Z]+)|([0-9]+)|.', sent)):
|
76 |
+
tok = match.group(0)
|
77 |
+
toks.append(tok)
|
78 |
+
if len(tok) > 2 and tok.isalpha() and (tok[0].islower()):
|
79 |
+
word_idxs.append(idx)
|
80 |
+
return toks, word_idxs
|
81 |
+
|
82 |
+
def _detokenize(toks):
|
83 |
+
return ''.join(toks)
|
84 |
+
|
85 |
+
def get_local_neighbors_char_level(sent, max_n_samples=500):
|
86 |
+
words, word_idxs = _tokenize(sent)
|
87 |
+
n_samples = min(len(word_idxs) *20, max_n_samples)
|
88 |
+
sent_perturbations = set()
|
89 |
+
if len(word_idxs) == 0:
|
90 |
+
return sent_perturbations
|
91 |
+
for _ in range(500):
|
92 |
+
word_idx = sample(word_idxs, 1)[0]
|
93 |
+
words_cp = words[:]
|
94 |
+
word_perturbations = list(word_attack.get_perturbations(words_cp[word_idx], n_samples=1))
|
95 |
+
if len(word_perturbations) > 0:
|
96 |
+
words_cp[word_idx] = word_perturbations[0]
|
97 |
+
sent_perturbed = _detokenize(words_cp)
|
98 |
+
if sent_perturbed != sent:
|
99 |
+
sent_perturbations.add(sent_perturbed)
|
100 |
+
if len(sent_perturbations) == n_samples:
|
101 |
+
break
|
102 |
+
#Adding common typos such as 's'
|
103 |
+
for word_idx in word_idxs:
|
104 |
+
words_cp = words[:]
|
105 |
+
word = words_cp[word_idx]
|
106 |
+
if len(word) > 2 and word[0].islower():
|
107 |
+
words_cp[word_idx] = word +'s'
|
108 |
+
sent_perturbed = _detokenize(words_cp)
|
109 |
+
if sent_perturbed != sent:
|
110 |
+
sent_perturbations.add(sent_perturbed)
|
111 |
+
words_cp[word_idx] = word[:-1]
|
112 |
+
sent_perturbed = _detokenize(words_cp)
|
113 |
+
if sent_perturbed != sent:
|
114 |
+
sent_perturbations.add(sent_perturbed)
|
115 |
+
if len(sent_perturbations) > max_n_samples:
|
116 |
+
sent_perturbations = list(sent_perturbations)
|
117 |
+
np.random.shuffle(sent_perturbations)
|
118 |
+
sent_perturbations = set(sent_perturbations[:max_n_samples])
|
119 |
+
return sent_perturbations
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
from critic.PIE.word_level_perturb import WordLevelPerturber_all, WordLevelPerturber_refine
|
124 |
+
from utils.text_utils import detokenize_sent
|
125 |
+
|
126 |
+
def get_local_neighbors_word_level(sent_toked, max_n_samples=500, mode='refine'):
|
127 |
+
""" sent_toked is tokenized by spacy """
|
128 |
+
n_samples = min(len(sent_toked) *20, max_n_samples)
|
129 |
+
orig_sent = ' '.join(sent_toked)
|
130 |
+
orig_sent_detok = detokenize_sent(orig_sent)
|
131 |
+
if mode == 'refine':
|
132 |
+
ptb = WordLevelPerturber_refine(orig_sent)
|
133 |
+
else:
|
134 |
+
ptb = WordLevelPerturber_all(orig_sent)
|
135 |
+
sent_perturbations = set()
|
136 |
+
for _ in range(500):
|
137 |
+
sent_perturbed = ptb.perturb()
|
138 |
+
if sent_perturbed != orig_sent:
|
139 |
+
sent_perturbed_detok = detokenize_sent(sent_perturbed)
|
140 |
+
sent_perturbations.add(sent_perturbed_detok)
|
141 |
+
if len(sent_perturbations) == n_samples:
|
142 |
+
break
|
143 |
+
assert len(sent_perturbations) <= max_n_samples
|
144 |
+
return sent_perturbations, orig_sent_detok
|
eval_critic/eval_critic.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
import editdistance
|
7 |
+
from tqdm import tqdm
|
8 |
+
from collections import Counter
|
9 |
+
|
10 |
+
sys.path.insert(0, '.')
|
11 |
+
from utils.text_utils import detokenize_sent
|
12 |
+
from critic.critic import run_gpt2, gpt2_critic
|
13 |
+
|
14 |
+
def load_data():
|
15 |
+
data_path = 'eval_critic/eval_data.jsonl'
|
16 |
+
good_sents, bad_sents = [], []
|
17 |
+
for line in open(data_path):
|
18 |
+
obj = json.loads(line)
|
19 |
+
good_sents.append(obj['good'])
|
20 |
+
bad_sents.append(obj['bad'])
|
21 |
+
return good_sents, bad_sents
|
22 |
+
|
23 |
+
good_sents, bad_sents = load_data()
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
def get_logps(sents):
|
28 |
+
final = []
|
29 |
+
for start in tqdm(range(0, len(sents), 100)):
|
30 |
+
sents_sub = sents[start: start+100]
|
31 |
+
sents_sub_detok = [detokenize_sent(sent) for sent in sents_sub]
|
32 |
+
logps = run_gpt2(sents_sub_detok)
|
33 |
+
assert logps is not None
|
34 |
+
for i in range(len(sents_sub)):
|
35 |
+
final.append({'sent': sents_sub[i], 'sent_detok': sents_sub_detok[i], 'logp': float(logps[i])})
|
36 |
+
return final
|
37 |
+
|
38 |
+
def evaluate_logp():
|
39 |
+
"""
|
40 |
+
Check whether log p(bad_sent) < log p(good_sent)
|
41 |
+
"""
|
42 |
+
good_logps = get_logps(good_sents)
|
43 |
+
bad_logps = get_logps(bad_sents)
|
44 |
+
accs = []
|
45 |
+
for good, bad in zip(good_logps, bad_logps):
|
46 |
+
accs.append(int(bad['logp'] < good['logp']))
|
47 |
+
avg_acc = float(sum(accs))/len(accs)
|
48 |
+
print (f'log p(bad) < log p(good)? {sum(accs)} / {len(accs)} = {avg_acc:.3f}')
|
49 |
+
return good_logps, bad_logps
|
50 |
+
|
51 |
+
good_logps, bad_logps = evaluate_logp()
|
52 |
+
# log p(bad) < log p(good)? 555 / 586 = 0.947
|
53 |
+
|
54 |
+
|
55 |
+
def compute_metrics(good_accs, bad_accs):
|
56 |
+
goodP = float(sum(good_accs))/(len(bad_accs)-sum(bad_accs)+sum(good_accs))
|
57 |
+
goodR = float(sum(good_accs))/len(good_accs)
|
58 |
+
goodF05 = (1+0.5**2) * float(goodP * goodR)/((0.5**2 * goodP) + goodR)
|
59 |
+
badP = float(sum(bad_accs))/(len(good_accs)-sum(good_accs)+sum(bad_accs))
|
60 |
+
badR = float(sum(bad_accs))/len(bad_accs)
|
61 |
+
badF05 = (1+0.5**2) * float(badP * badR)/((0.5**2 * badP) + badR)
|
62 |
+
print (f' Good precision = {sum(good_accs)} / {(len(bad_accs)-sum(bad_accs)+sum(good_accs))} = {goodP:.3f}')
|
63 |
+
print (f' Good recall = {sum(good_accs)} / {len(good_accs)} = {goodR:.3f}')
|
64 |
+
print (f' Good F0.5 = {goodF05:.3f}')
|
65 |
+
print (f' Bad precision = {sum(bad_accs)} / {(len(good_accs)-sum(good_accs)+sum(bad_accs))} = {badP:.3f}')
|
66 |
+
print (f' Bad recall = {sum(bad_accs)} / {len(bad_accs)} = {badR:.3f}')
|
67 |
+
print (f' Bad F0.5 = {badF05:.3f}')
|
68 |
+
return {'goodP': goodP, 'goodR': goodR, 'goodF05': goodF05, 'badP': badP, 'badR': badR, 'badF05': badF05}
|
69 |
+
|
70 |
+
def evaluate_baseline_critic():
|
71 |
+
threshold = np.mean([elm['logp'] for elm in good_logps + bad_logps])
|
72 |
+
good_accs, bad_accs = [], []
|
73 |
+
for obj in good_logps:
|
74 |
+
pred = int(obj['logp'] > threshold)
|
75 |
+
good_accs.append(pred==1)
|
76 |
+
for obj in bad_logps:
|
77 |
+
pred = int(obj['logp'] > threshold)
|
78 |
+
bad_accs.append(pred==0)
|
79 |
+
print ('\nBaseline critic:')
|
80 |
+
stats = compute_metrics(good_accs, bad_accs)
|
81 |
+
json.dump(stats, open('baseline_critic.stats.json', 'w'), indent=2)
|
82 |
+
|
83 |
+
evaluate_baseline_critic()
|
84 |
+
# Baseline critic:
|
85 |
+
# Good precision = 365 / 668 = 0.546
|
86 |
+
# Good recall = 365 / 586 = 0.623
|
87 |
+
# Good F0.5 = 0.560
|
88 |
+
# Bad precision = 283 / 504 = 0.562
|
89 |
+
# Bad recall = 283 / 586 = 0.483
|
90 |
+
# Bad F0.5 = 0.544
|
91 |
+
|
92 |
+
|
93 |
+
def evaluate_LM_Critic():
|
94 |
+
good_accs, bad_accs = [], []
|
95 |
+
for obj in tqdm(good_logps):
|
96 |
+
res = gpt2_critic(obj['sent_detok'], verbose=0, seed=1, n_samples=100, word_level_mode='refine')
|
97 |
+
pred = int(res[0])
|
98 |
+
good_accs.append(pred==1)
|
99 |
+
for obj in tqdm(bad_logps):
|
100 |
+
res = gpt2_critic(obj['sent_detok'], verbose=0, seed=1, n_samples=100, word_level_mode='refine')
|
101 |
+
pred = int(res[0])
|
102 |
+
bad_accs.append(pred==0)
|
103 |
+
print ('\nLM-Critic:')
|
104 |
+
stats = compute_metrics(good_accs, bad_accs)
|
105 |
+
json.dump(stats, open('lm_critic.stats.json', 'w'), indent=2)
|
106 |
+
|
107 |
+
evaluate_LM_Critic()
|
108 |
+
# LM-Critic: (there is variance due to the randomness of sampling, some variation in GPT2 return score)
|
109 |
+
# Good precision = 446 / 654 = 0.682
|
110 |
+
# Good recall = 446 / 586 = 0.761
|
111 |
+
# Good F0.5 = 0.696
|
112 |
+
# Bad precision = 378 / 518 = 0.730
|
113 |
+
# Bad recall = 378 / 586 = 0.645
|
114 |
+
# Bad F0.5 = 0.711
|
eval_critic/eval_data.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
gec/download_data.sh
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
conda activate errant200
|
2 |
+
|
3 |
+
|
4 |
+
######################## Set up benckmarks ########################
|
5 |
+
mkdir -p benchmarks
|
6 |
+
cd benchmarks
|
7 |
+
|
8 |
+
#Prepare CoNLL2014
|
9 |
+
wget https://www.comp.nus.edu.sg/~nlp/conll14st/conll14st-test-data.tar.gz
|
10 |
+
tar -xf conll14st-test-data.tar.gz
|
11 |
+
python3 scripts/get_orig_from_m2.py conll14st-test-data/noalt/official-2014.combined.m2 \
|
12 |
+
-out conll14st-test-data/noalt/official-2014.combined.orig.txt
|
13 |
+
|
14 |
+
|
15 |
+
#Prepare BEA2019
|
16 |
+
wget https://www.cl.cam.ac.uk/research/nl/bea2019st/data/wi+locness_v2.1.bea19.tar.gz
|
17 |
+
tar -xf wi+locness_v2.1.bea19.tar.gz
|
18 |
+
mv wi+locness wi+locness_v2.1.bea19
|
19 |
+
python3 scripts/get_orig_from_m2.py wi+locness_v2.1.bea19/m2/ABCN.dev.gold.bea19.m2 \
|
20 |
+
-out wi+locness_v2.1.bea19/m2/ABCN.dev.bea19.orig.txt
|
21 |
+
|
22 |
+
|
23 |
+
#Prepare GMEG-wiki and -yahoo
|
24 |
+
git clone https://github.com/grammarly/GMEG.git
|
25 |
+
root=GMEG/data/test/wiki
|
26 |
+
errant_parallel -orig $root/source \
|
27 |
+
-cor $root/ref0 $root/ref1 $root/ref2 $root/ref3 \
|
28 |
+
-out $root/ref.m2
|
29 |
+
|
30 |
+
root=GMEG/data/test/yahoo
|
31 |
+
errant_parallel -orig $root/source \
|
32 |
+
-cor $root/ref0 $root/ref1 $root/ref2 $root/ref3 \
|
33 |
+
-out $root/ref.m2
|
34 |
+
|
35 |
+
|
36 |
+
#Download M2 scorer
|
37 |
+
git clone https://github.com/nusnlp/m2scorer.git
|
38 |
+
|
39 |
+
|
40 |
+
######################## Download training data ########################
|
41 |
+
cd ../
|
42 |
+
wget https://nlp.stanford.edu/projects/myasu/LM-Critic/data.zip
|
43 |
+
unzip data.zip
|
gec/scripts/get_corr_from_m2.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
# Apply the edits of a single annotator to generate the corrected sentences.
|
4 |
+
def main(args):
|
5 |
+
m2 = open(args.m2_file).read().strip().split("\n\n")
|
6 |
+
out = open(args.out, "w")
|
7 |
+
# Do not apply edits with these error types
|
8 |
+
skip = {"noop", "UNK", "Um"}
|
9 |
+
|
10 |
+
for sent in m2:
|
11 |
+
sent = sent.split("\n")
|
12 |
+
cor_sent = sent[0].split()[1:] # Ignore "S "
|
13 |
+
edits = sent[1:]
|
14 |
+
offset = 0
|
15 |
+
for edit in edits:
|
16 |
+
edit = edit.split("|||")
|
17 |
+
if edit[1] in skip: continue # Ignore certain edits
|
18 |
+
coder = int(edit[-1])
|
19 |
+
if coder != args.id: continue # Ignore other coders
|
20 |
+
span = edit[0].split()[1:] # Ignore "A "
|
21 |
+
start = int(span[0])
|
22 |
+
end = int(span[1])
|
23 |
+
cor = edit[2].split()
|
24 |
+
cor_sent[start+offset:end+offset] = cor
|
25 |
+
offset = offset-(end-start)+len(cor)
|
26 |
+
out.write(" ".join(cor_sent)+"\n")
|
27 |
+
|
28 |
+
if __name__ == "__main__":
|
29 |
+
# Define and parse program input
|
30 |
+
parser = argparse.ArgumentParser()
|
31 |
+
parser.add_argument("m2_file", help="The path to an input m2 file.")
|
32 |
+
parser.add_argument("-out", help="A path to where we save the output corrected text file.", required=True)
|
33 |
+
parser.add_argument("-id", help="The id of the target annotator in the m2 file.", type=int, default=0)
|
34 |
+
args = parser.parse_args()
|
35 |
+
main(args)
|
gec/scripts/get_orig_from_m2.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
# Apply the edits of a single annotator to generate the corrected sentences.
|
4 |
+
def main(args):
|
5 |
+
m2 = open(args.m2_file).read().strip().split("\n\n")
|
6 |
+
out = open(args.out, "w")
|
7 |
+
# Do not apply edits with these error types
|
8 |
+
skip = {"noop", "UNK", "Um"}
|
9 |
+
|
10 |
+
for sent in m2:
|
11 |
+
sent = sent.split("\n")
|
12 |
+
orig_sent = sent[0].split()[1:] # Ignore "S "
|
13 |
+
out.write(" ".join(orig_sent)+"\n")
|
14 |
+
|
15 |
+
if __name__ == "__main__":
|
16 |
+
# Define and parse program input
|
17 |
+
parser = argparse.ArgumentParser()
|
18 |
+
parser.add_argument("m2_file", help="The path to an input m2 file.")
|
19 |
+
parser.add_argument("-out", help="A path to where we save the output corrected text file.", required=True)
|
20 |
+
parser.add_argument("-id", help="The id of the target annotator in the m2 file.", type=int, default=0)
|
21 |
+
args = parser.parse_args()
|
22 |
+
main(args)
|
gec/scripts/parse_errant_output.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
|
6 |
+
for i, line in enumerate(sys.stdin):
|
7 |
+
if i == 3:
|
8 |
+
nums = line.split()
|
9 |
+
P, R, F = nums[3:6]
|
10 |
+
json.dump({'precision': float(P), 'recall': float(R), 'F0.5': float(F)}, open('stats.json', 'w'), indent=2)
|
11 |
+
break
|
gec/scripts/parse_m2_output.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
|
6 |
+
scores = []
|
7 |
+
for i, line in enumerate(sys.stdin):
|
8 |
+
score = line.split(':')[1].strip()
|
9 |
+
scores.append(float(score))
|
10 |
+
|
11 |
+
json.dump({'precision': scores[0], 'recall': scores[1], 'F0.5': scores[2]}, open('stats.json', 'w'), indent=2)
|
gec/src/run-round0.sh
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exit 0;
|
2 |
+
################################################################################
|
3 |
+
# run the following commands one by one in the `gec/` directory of the repo
|
4 |
+
################################################################################
|
5 |
+
export CUDA_VISIBLE_DEVICES=0
|
6 |
+
conda activate lm-critic
|
7 |
+
|
8 |
+
############### Train the fixer ###############
|
9 |
+
dt=`date '+%Y%m%d_%H%M%S'`
|
10 |
+
outdir=data/round0__synthetic/model-fixer__${dt}
|
11 |
+
mkdir -p $outdir
|
12 |
+
python3.8 -u src/run_seq2seq.py \
|
13 |
+
--model_name_or_path facebook/bart-base --task summarization --text_column bad_detoked --summary_column good_detoked \
|
14 |
+
--do_train --num_train_epochs 1 --train_file data/round0__synthetic/synthetic_paired_data_9M.json \
|
15 |
+
--preprocessing_num_workers 20 --overwrite_output_dir --output_dir $outdir --predict_with_generate --fp16 \
|
16 |
+
--per_device_train_batch_size 64 --gradient_accumulation_steps 8 --max_source_length 64 --max_target_length 64 \
|
17 |
+
--logging_first_step --logging_steps 20 --save_steps 2000 \
|
18 |
+
|& tee $outdir/log.txt
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
############### Run the fixer on benchmarks ###############
|
23 |
+
model_path=data/round0__synthetic/model-fixer
|
24 |
+
|
25 |
+
#BEA2019
|
26 |
+
python src/run_fixer.py -m $model_path -i benchmarks/wi+locness_v2.1.bea19/m2/ABCN.dev.bea19.orig.txt -o $model_path/predictions/bea19dev.out.txt --bea19
|
27 |
+
#CoNLL2014
|
28 |
+
python src/run_fixer.py -m $model_path -i benchmarks/conll14st-test-data/noalt/official-2014.combined.orig.txt -o $model_path/predictions/conll14.out.txt
|
29 |
+
#GMEG-wiki
|
30 |
+
python src/run_fixer.py -m $model_path -i benchmarks/GMEG/data/test/wiki/source -o $model_path/predictions/gmeg.wiki.out.txt
|
31 |
+
#GMEG-yahoo
|
32 |
+
python src/run_fixer.py -m $model_path -i benchmarks/GMEG/data/test/yahoo/source -o $model_path/predictions/gmeg.yahoo.out.txt
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
############### Evaluate the fixer outputs ###############
|
37 |
+
#CoNLL2014
|
38 |
+
python2 benchmarks/m2scorer/scripts/m2scorer.py $model_path/predictions/conll14.out.txt \
|
39 |
+
benchmarks/conll14st-test-data/noalt/official-2014.combined.m2 | tee $model_path/predictions/conll14.eval.txt
|
40 |
+
# Precision : 0.5922
|
41 |
+
# Recall : 0.2920
|
42 |
+
# F_0.5 : 0.4912
|
43 |
+
|
44 |
+
|
45 |
+
#BEA2019 and GMEG uses errant scorer, which needs its own environment
|
46 |
+
conda deactivate
|
47 |
+
conda activate errant200
|
48 |
+
|
49 |
+
#BEA2019
|
50 |
+
errant_parallel -orig benchmarks/wi+locness_v2.1.bea19/m2/ABCN.dev.bea19.orig.txt \
|
51 |
+
-cor $model_path/predictions/bea19dev.out.txt \
|
52 |
+
-out $model_path/predictions/bea19dev.outm2.txt && \
|
53 |
+
errant_compare -hyp $model_path/predictions/bea19dev.outm2.txt -ref benchmarks/wi+locness_v2.1.bea19/m2/ABCN.dev.gold.bea19.m2 | tee $model_path/predictions/bea19dev.eval.txt
|
54 |
+
# =========== Span-Based Correction ============
|
55 |
+
# TP FP FN Prec Rec F0.5
|
56 |
+
# 1337 1686 6124 0.4423 0.1792 0.3419
|
57 |
+
# ==============================================
|
58 |
+
|
59 |
+
#GEMG-wiki
|
60 |
+
errant_parallel -orig benchmarks/GMEG/data/test/wiki/source \
|
61 |
+
-cor $model_path/predictions/gmeg.wiki.out.txt \
|
62 |
+
-out $model_path/predictions/gmeg.wiki.outm2.txt && \
|
63 |
+
errant_compare -hyp $model_path/predictions/gmeg.wiki.outm2.txt -ref benchmarks/GMEG/data/test/wiki/ref.m2 | tee $model_path/predictions/gmeg.wiki.eval.txt
|
64 |
+
# =========== Span-Based Correction ============
|
65 |
+
# TP FP FN Prec Rec F0.5
|
66 |
+
# 352 323 973 0.5215 0.2657 0.4373
|
67 |
+
# ==============================================
|
68 |
+
|
69 |
+
#GEMG-yahoo
|
70 |
+
errant_parallel -orig benchmarks/GMEG/data/test/yahoo/source \
|
71 |
+
-cor $model_path/predictions/gmeg.yahoo.out.txt \
|
72 |
+
-out $model_path/predictions/gmeg.yahoo.outm2.txt && \
|
73 |
+
errant_compare -hyp $model_path/predictions/gmeg.yahoo.outm2.txt -ref benchmarks/GMEG/data/test/yahoo/ref.m2 | tee $model_path/predictions/gmeg.yahoo.eval.txt
|
74 |
+
# =========== Span-Based Correction ============
|
75 |
+
# TP FP FN Prec Rec F0.5
|
76 |
+
# 241 301 411 0.4446 0.3696 0.4273
|
77 |
+
# ==============================================
|
gec/src/run-round1.sh
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exit 0;
|
2 |
+
################################################################################
|
3 |
+
# run the following commands one by one in the `gec/` directory of the repo
|
4 |
+
################################################################################
|
5 |
+
export CUDA_VISIBLE_DEVICES=0
|
6 |
+
conda activate lm-critic
|
7 |
+
|
8 |
+
############### Train the fixer ###############
|
9 |
+
dt=`date '+%Y%m%d_%H%M%S'`
|
10 |
+
outdir=data/round1__BIFI/model-fixer__${dt}
|
11 |
+
mkdir -p $outdir
|
12 |
+
python3.8 -u src/run_seq2seq.py \
|
13 |
+
--model_name_or_path facebook/bart-base --task summarization --text_column bad_detoked --summary_column good_detoked \
|
14 |
+
--do_train --num_train_epochs 1 --train_file data/round1__BIFI/BIFI_paired_data_9M.json \
|
15 |
+
--preprocessing_num_workers 20 --overwrite_output_dir --output_dir $outdir --predict_with_generate --fp16 \
|
16 |
+
--per_device_train_batch_size 64 --gradient_accumulation_steps 8 --max_source_length 64 --max_target_length 64 \
|
17 |
+
--logging_first_step --logging_steps 20 --save_steps 2000 \
|
18 |
+
|& tee $outdir/log.txt
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
############### Run the fixer on benchmarks ###############
|
23 |
+
model_path=data/round1__BIFI/model-fixer
|
24 |
+
#BEA2019
|
25 |
+
python src/run_fixer.py -m $model_path -i benchmarks/wi+locness_v2.1.bea19/m2/ABCN.dev.bea19.orig.txt -o $model_path/predictions/bea19dev.out.txt --bea19
|
26 |
+
#CoNLL2014
|
27 |
+
python src/run_fixer.py -m $model_path -i benchmarks/conll14st-test-data/noalt/official-2014.combined.orig.txt -o $model_path/predictions/conll14.out.txt
|
28 |
+
#GMEG-wiki
|
29 |
+
python src/run_fixer.py -m $model_path -i benchmarks/GMEG/data/test/wiki/source -o $model_path/predictions/gmeg.wiki.out.txt
|
30 |
+
#GMEG-yahoo
|
31 |
+
python src/run_fixer.py -m $model_path -i benchmarks/GMEG/data/test/yahoo/source -o $model_path/predictions/gmeg.yahoo.out.txt
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
############### Evaluate the fixer outputs ###############
|
36 |
+
#CoNLL2014
|
37 |
+
python2 benchmarks/m2scorer/scripts/m2scorer.py $model_path/predictions/conll14.out.txt \
|
38 |
+
benchmarks/conll14st-test-data/noalt/official-2014.combined.m2 | tee $model_path/predictions/conll14.eval.txt
|
39 |
+
# Precision : 0.6444
|
40 |
+
# Recall : 0.3569
|
41 |
+
# F_0.5 : 0.5550
|
42 |
+
|
43 |
+
#BEA2019 and GMEG uses errant scorer, which needs its own environment
|
44 |
+
conda deactivate
|
45 |
+
conda activate errant200
|
46 |
+
|
47 |
+
#BEA2019
|
48 |
+
errant_parallel -orig benchmarks/wi+locness_v2.1.bea19/m2/ABCN.dev.bea19.orig.txt \
|
49 |
+
-cor $model_path/predictions/bea19dev.out.txt \
|
50 |
+
-out $model_path/predictions/bea19dev.outm2.txt && \
|
51 |
+
errant_compare -hyp $model_path/predictions/bea19dev.outm2.txt -ref benchmarks/wi+locness_v2.1.bea19/m2/ABCN.dev.gold.bea19.m2 | tee $model_path/predictions/bea19dev.eval.txt
|
52 |
+
# =========== Span-Based Correction ============
|
53 |
+
# TP FP FN Prec Rec F0.5
|
54 |
+
# 1848 1733 5613 0.5161 0.2477 0.4241
|
55 |
+
# ==============================================
|
56 |
+
|
57 |
+
#GEMG-wiki
|
58 |
+
errant_parallel -orig benchmarks/GMEG/data/test/wiki/source \
|
59 |
+
-cor $model_path/predictions/gmeg.wiki.out.txt \
|
60 |
+
-out $model_path/predictions/gmeg.wiki.outm2.txt && \
|
61 |
+
errant_compare -hyp $model_path/predictions/gmeg.wiki.outm2.txt -ref benchmarks/GMEG/data/test/wiki/ref.m2 | tee $model_path/predictions/gmeg.wiki.eval.txt
|
62 |
+
# =========== Span-Based Correction ============
|
63 |
+
# TP FP FN Prec Rec F0.5
|
64 |
+
# 468 339 925 0.5799 0.336 0.5064
|
65 |
+
# ==============================================
|
66 |
+
|
67 |
+
#GEMG-yahoo
|
68 |
+
errant_parallel -orig benchmarks/GMEG/data/test/yahoo/source \
|
69 |
+
-cor $model_path/predictions/gmeg.yahoo.out.txt \
|
70 |
+
-out $model_path/predictions/gmeg.yahoo.outm2.txt && \
|
71 |
+
errant_compare -hyp $model_path/predictions/gmeg.yahoo.outm2.txt -ref benchmarks/GMEG/data/test/yahoo/ref.m2 | tee $model_path/predictions/gmeg.yahoo.eval.txt
|
72 |
+
# =========== Span-Based Correction ============
|
73 |
+
# TP FP FN Prec Rec F0.5
|
74 |
+
# 382 329 428 0.5373 0.4716 0.5227
|
75 |
+
# ==============================================
|
gec/src/run_fixer.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
import argparse
|
6 |
+
from tqdm import tqdm
|
7 |
+
from transformers import BartForConditionalGeneration, BartTokenizer
|
8 |
+
|
9 |
+
sys.path.insert(0, '..')
|
10 |
+
from utils.text_utils import detokenize_sent
|
11 |
+
from utils.spacy_tokenizer import spacy_tokenize_gec, spacy_tokenize_bea19
|
12 |
+
|
13 |
+
parser = argparse.ArgumentParser()
|
14 |
+
parser.add_argument('-m', '--model_path')
|
15 |
+
parser.add_argument('-i', '--input_path')
|
16 |
+
parser.add_argument('-o', '--output_path')
|
17 |
+
parser.add_argument('--bea19', action='store_true')
|
18 |
+
args = parser.parse_args()
|
19 |
+
|
20 |
+
|
21 |
+
tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
|
22 |
+
model = BartForConditionalGeneration.from_pretrained(args.model_path, force_bos_token_to_be_generated=True)
|
23 |
+
model.eval()
|
24 |
+
model.cuda()
|
25 |
+
|
26 |
+
|
27 |
+
def run_model(sents):
|
28 |
+
num_ret_seqs = 10
|
29 |
+
inp_max_len = 66
|
30 |
+
batch = [tokenizer(s, return_tensors='pt', padding='max_length', max_length=inp_max_len) for s in sents]
|
31 |
+
oidx2bidx = {} #original index to final batch index
|
32 |
+
final_batch = []
|
33 |
+
for oidx, elm in enumerate(batch):
|
34 |
+
if elm['input_ids'].size(1) <= inp_max_len:
|
35 |
+
oidx2bidx[oidx] = len(final_batch)
|
36 |
+
final_batch.append(elm)
|
37 |
+
batch = {key: torch.cat([elm[key] for elm in final_batch], dim=0) for key in final_batch[0]}
|
38 |
+
with torch.no_grad():
|
39 |
+
generated_ids = model.generate(batch['input_ids'].cuda(),
|
40 |
+
attention_mask=batch['attention_mask'].cuda(),
|
41 |
+
num_beams=10, num_return_sequences=num_ret_seqs, max_length=65)
|
42 |
+
_out = tokenizer.batch_decode(generated_ids.detach().cpu(), skip_special_tokens=True)
|
43 |
+
outs = []
|
44 |
+
for i in range(0, len(_out), num_ret_seqs):
|
45 |
+
outs.append(_out[i:i+num_ret_seqs])
|
46 |
+
final_outs = [[sents[oidx]] if oidx not in oidx2bidx else outs[oidx2bidx[oidx]] for oidx in range(len(sents))]
|
47 |
+
return final_outs
|
48 |
+
|
49 |
+
|
50 |
+
def run_for_wiki_yahoo_conll():
|
51 |
+
sents = [detokenize_sent(l.strip()) for l in open(args.input_path)]
|
52 |
+
b_size = 40
|
53 |
+
outs = []
|
54 |
+
for j in tqdm(range(0, len(sents), b_size)):
|
55 |
+
sents_batch = sents[j:j+b_size]
|
56 |
+
outs_batch = run_model(sents_batch)
|
57 |
+
for sent, preds in zip(sents_batch, outs_batch):
|
58 |
+
preds_detoked = [detokenize_sent(pred) for pred in preds]
|
59 |
+
preds = [' '.join(spacy_tokenize_gec(pred)) for pred in preds_detoked]
|
60 |
+
outs.append({'src': sent, 'preds': preds})
|
61 |
+
os.system('mkdir -p {}'.format(os.path.dirname(args.output_path)))
|
62 |
+
with open(args.output_path, 'w') as outf:
|
63 |
+
for out in outs:
|
64 |
+
print (out['preds'][0], file=outf)
|
65 |
+
|
66 |
+
|
67 |
+
def run_for_bea19():
|
68 |
+
sents = [detokenize_sent(l.strip()) for l in open(args.input_path)]
|
69 |
+
b_size = 40
|
70 |
+
outs = []
|
71 |
+
for j in tqdm(range(0, len(sents), b_size)):
|
72 |
+
sents_batch = sents[j:j+b_size]
|
73 |
+
outs_batch = run_model(sents_batch)
|
74 |
+
for sent, preds in zip(sents_batch, outs_batch):
|
75 |
+
preds_detoked = [detokenize_sent(pred) for pred in preds]
|
76 |
+
preds = [' '.join(spacy_tokenize_bea19(pred)) for pred in preds_detoked]
|
77 |
+
outs.append({'src': sent, 'preds': preds})
|
78 |
+
os.system('mkdir -p {}'.format(os.path.dirname(args.output_path)))
|
79 |
+
with open(args.output_path, 'w') as outf:
|
80 |
+
for out in outs:
|
81 |
+
print (out['preds'][0], file=outf)
|
82 |
+
|
83 |
+
|
84 |
+
if args.bea19:
|
85 |
+
run_for_bea19()
|
86 |
+
else:
|
87 |
+
run_for_wiki_yahoo_conll()
|
gec/src/run_seq2seq.py
ADDED
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Fine-tuning the library models for sequence to sequence.
|
17 |
+
"""
|
18 |
+
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
19 |
+
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
from dataclasses import dataclass, field
|
25 |
+
from typing import Optional
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
from datasets import load_dataset, load_metric
|
29 |
+
|
30 |
+
import transformers
|
31 |
+
from transformers import (
|
32 |
+
AutoConfig,
|
33 |
+
AutoModelForSeq2SeqLM,
|
34 |
+
AutoTokenizer,
|
35 |
+
DataCollatorForSeq2Seq,
|
36 |
+
HfArgumentParser,
|
37 |
+
MBartTokenizer,
|
38 |
+
Seq2SeqTrainer,
|
39 |
+
Seq2SeqTrainingArguments,
|
40 |
+
default_data_collator,
|
41 |
+
set_seed,
|
42 |
+
)
|
43 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.getLogger(__name__)
|
47 |
+
|
48 |
+
|
49 |
+
@dataclass
|
50 |
+
class ModelArguments:
|
51 |
+
"""
|
52 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
53 |
+
"""
|
54 |
+
|
55 |
+
model_name_or_path: str = field(
|
56 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
57 |
+
)
|
58 |
+
config_name: Optional[str] = field(
|
59 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
60 |
+
)
|
61 |
+
tokenizer_name: Optional[str] = field(
|
62 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
63 |
+
)
|
64 |
+
cache_dir: Optional[str] = field(
|
65 |
+
default=None,
|
66 |
+
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
67 |
+
)
|
68 |
+
use_fast_tokenizer: bool = field(
|
69 |
+
default=True,
|
70 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
71 |
+
)
|
72 |
+
model_revision: str = field(
|
73 |
+
default="main",
|
74 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
75 |
+
)
|
76 |
+
use_auth_token: bool = field(
|
77 |
+
default=False,
|
78 |
+
metadata={
|
79 |
+
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
80 |
+
"with private models)."
|
81 |
+
},
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
@dataclass
|
86 |
+
class DataTrainingArguments:
|
87 |
+
"""
|
88 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
89 |
+
"""
|
90 |
+
|
91 |
+
task: str = field(
|
92 |
+
default="summarization",
|
93 |
+
metadata={
|
94 |
+
"help": "The name of the task, should be summarization (or summarization_{dataset} for evaluating "
|
95 |
+
"pegasus) or translation (or translation_{xx}_to_{yy})."
|
96 |
+
},
|
97 |
+
)
|
98 |
+
dataset_name: Optional[str] = field(
|
99 |
+
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
100 |
+
)
|
101 |
+
dataset_config_name: Optional[str] = field(
|
102 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
103 |
+
)
|
104 |
+
text_column: Optional[str] = field(
|
105 |
+
default=None,
|
106 |
+
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
|
107 |
+
)
|
108 |
+
summary_column: Optional[str] = field(
|
109 |
+
default=None,
|
110 |
+
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
|
111 |
+
)
|
112 |
+
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
113 |
+
validation_file: Optional[str] = field(
|
114 |
+
default=None,
|
115 |
+
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
116 |
+
)
|
117 |
+
overwrite_cache: bool = field(
|
118 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
119 |
+
)
|
120 |
+
preprocessing_num_workers: Optional[int] = field(
|
121 |
+
default=None,
|
122 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
123 |
+
)
|
124 |
+
max_source_length: Optional[int] = field(
|
125 |
+
default=1024,
|
126 |
+
metadata={
|
127 |
+
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
128 |
+
"than this will be truncated, sequences shorter will be padded."
|
129 |
+
},
|
130 |
+
)
|
131 |
+
max_target_length: Optional[int] = field(
|
132 |
+
default=128,
|
133 |
+
metadata={
|
134 |
+
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
|
135 |
+
"than this will be truncated, sequences shorter will be padded."
|
136 |
+
},
|
137 |
+
)
|
138 |
+
val_max_target_length: Optional[int] = field(
|
139 |
+
default=None,
|
140 |
+
metadata={
|
141 |
+
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
|
142 |
+
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
|
143 |
+
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
|
144 |
+
"during ``evaluate`` and ``predict``."
|
145 |
+
},
|
146 |
+
)
|
147 |
+
pad_to_max_length: bool = field(
|
148 |
+
default=False,
|
149 |
+
metadata={
|
150 |
+
"help": "Whether to pad all samples to model maximum sentence length. "
|
151 |
+
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
|
152 |
+
"efficient on GPU but very bad for TPU."
|
153 |
+
},
|
154 |
+
)
|
155 |
+
max_train_samples: Optional[int] = field(
|
156 |
+
default=None,
|
157 |
+
metadata={
|
158 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
159 |
+
"value if set."
|
160 |
+
},
|
161 |
+
)
|
162 |
+
max_val_samples: Optional[int] = field(
|
163 |
+
default=None,
|
164 |
+
metadata={
|
165 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
166 |
+
"value if set."
|
167 |
+
},
|
168 |
+
)
|
169 |
+
source_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."})
|
170 |
+
target_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."})
|
171 |
+
eval_beams: Optional[int] = field(default=None, metadata={"help": "Number of beams to use for evaluation."})
|
172 |
+
ignore_pad_token_for_loss: bool = field(
|
173 |
+
default=True,
|
174 |
+
metadata={
|
175 |
+
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
|
176 |
+
},
|
177 |
+
)
|
178 |
+
source_prefix: Optional[str] = field(
|
179 |
+
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
|
180 |
+
)
|
181 |
+
|
182 |
+
def __post_init__(self):
|
183 |
+
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
184 |
+
raise ValueError("Need either a dataset name or a training/validation file.")
|
185 |
+
else:
|
186 |
+
if self.train_file is not None:
|
187 |
+
extension = self.train_file.split(".")[-1]
|
188 |
+
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
189 |
+
if self.validation_file is not None:
|
190 |
+
extension = self.validation_file.split(".")[-1]
|
191 |
+
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
192 |
+
if not self.task.startswith("summarization") and not self.task.startswith("translation"):
|
193 |
+
raise ValueError(
|
194 |
+
"`task` should be summarization, summarization_{dataset}, translation or translation_{xx}_to_{yy}."
|
195 |
+
)
|
196 |
+
if self.val_max_target_length is None:
|
197 |
+
self.val_max_target_length = self.max_target_length
|
198 |
+
|
199 |
+
|
200 |
+
summarization_name_mapping = {
|
201 |
+
"amazon_reviews_multi": ("review_body", "review_title"),
|
202 |
+
"big_patent": ("description", "abstract"),
|
203 |
+
"cnn_dailymail": ("article", "highlights"),
|
204 |
+
"orange_sum": ("text", "summary"),
|
205 |
+
"pn_summary": ("article", "summary"),
|
206 |
+
"psc": ("extract_text", "summary_text"),
|
207 |
+
"samsum": ("dialogue", "summary"),
|
208 |
+
"thaisum": ("body", "summary"),
|
209 |
+
"xglue": ("news_body", "news_title"),
|
210 |
+
"xsum": ("document", "summary"),
|
211 |
+
"wiki_summary": ("article", "highlights"),
|
212 |
+
}
|
213 |
+
|
214 |
+
|
215 |
+
def main():
|
216 |
+
# See all possible arguments in src/transformers/training_args.py
|
217 |
+
# or by passing the --help flag to this script.
|
218 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
219 |
+
|
220 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
221 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
222 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
223 |
+
# let's parse it to get our arguments.
|
224 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
225 |
+
else:
|
226 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
227 |
+
|
228 |
+
# Detecting last checkpoint.
|
229 |
+
last_checkpoint = None
|
230 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
231 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
232 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
233 |
+
raise ValueError(
|
234 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
235 |
+
"Use --overwrite_output_dir to overcome."
|
236 |
+
)
|
237 |
+
elif last_checkpoint is not None:
|
238 |
+
logger.info(
|
239 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
240 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
241 |
+
)
|
242 |
+
|
243 |
+
# Setup logging
|
244 |
+
logging.basicConfig(
|
245 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
246 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
247 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
248 |
+
)
|
249 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
250 |
+
|
251 |
+
# Log on each process the small summary:
|
252 |
+
logger.warning(
|
253 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
254 |
+
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
255 |
+
)
|
256 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
257 |
+
if is_main_process(training_args.local_rank):
|
258 |
+
transformers.utils.logging.set_verbosity_info()
|
259 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
260 |
+
|
261 |
+
# Set seed before initializing model.
|
262 |
+
set_seed(training_args.seed)
|
263 |
+
|
264 |
+
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
|
265 |
+
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
266 |
+
# (the dataset will be downloaded automatically from the datasets Hub).
|
267 |
+
#
|
268 |
+
# For CSV/JSON files in the summarization task, this script will use the first column for the full texts and the
|
269 |
+
# second column for the summaries (unless you specify column names for this with the `text_column` and
|
270 |
+
# `summary_column` arguments).
|
271 |
+
# For translation, only JSON files are supported, with one field named "translation" containing two keys for the
|
272 |
+
# source and target languages (unless you adapt what follows).
|
273 |
+
#
|
274 |
+
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
275 |
+
# download the dataset.
|
276 |
+
if data_args.dataset_name is not None:
|
277 |
+
# Downloading and loading a dataset from the hub.
|
278 |
+
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
|
279 |
+
else:
|
280 |
+
data_files = {}
|
281 |
+
if data_args.train_file is not None:
|
282 |
+
data_files["train"] = data_args.train_file
|
283 |
+
extension = data_args.train_file.split(".")[-1]
|
284 |
+
if data_args.validation_file is not None:
|
285 |
+
data_files["validation"] = data_args.validation_file
|
286 |
+
extension = data_args.validation_file.split(".")[-1]
|
287 |
+
datasets = load_dataset(extension, data_files=data_files)
|
288 |
+
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
289 |
+
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
290 |
+
|
291 |
+
# Load pretrained model and tokenizer
|
292 |
+
#
|
293 |
+
# Distributed training:
|
294 |
+
# The .from_pretrained methods guarantee that only one local process can concurrently
|
295 |
+
# download model & vocab.
|
296 |
+
config = AutoConfig.from_pretrained(
|
297 |
+
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
298 |
+
cache_dir=model_args.cache_dir,
|
299 |
+
revision=model_args.model_revision,
|
300 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
301 |
+
)
|
302 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
303 |
+
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
304 |
+
cache_dir=model_args.cache_dir,
|
305 |
+
use_fast=model_args.use_fast_tokenizer,
|
306 |
+
revision=model_args.model_revision,
|
307 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
308 |
+
)
|
309 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
310 |
+
model_args.model_name_or_path,
|
311 |
+
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
312 |
+
config=config,
|
313 |
+
cache_dir=model_args.cache_dir,
|
314 |
+
revision=model_args.model_revision,
|
315 |
+
use_auth_token=True if model_args.use_auth_token else None,
|
316 |
+
)
|
317 |
+
|
318 |
+
# Set decoder_start_token_id
|
319 |
+
if model.config.decoder_start_token_id is None and isinstance(tokenizer, MBartTokenizer):
|
320 |
+
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
|
321 |
+
if model.config.decoder_start_token_id is None:
|
322 |
+
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
323 |
+
|
324 |
+
# Get the default prefix if None is passed.
|
325 |
+
if data_args.source_prefix is None:
|
326 |
+
task_specific_params = model.config.task_specific_params
|
327 |
+
if task_specific_params is not None:
|
328 |
+
prefix = task_specific_params.get("prefix", "")
|
329 |
+
else:
|
330 |
+
prefix = ""
|
331 |
+
else:
|
332 |
+
prefix = data_args.source_prefix
|
333 |
+
|
334 |
+
# Preprocessing the datasets.
|
335 |
+
# We need to tokenize inputs and targets.
|
336 |
+
if training_args.do_train:
|
337 |
+
column_names = datasets["train"].column_names
|
338 |
+
else:
|
339 |
+
column_names = datasets["validation"].column_names
|
340 |
+
|
341 |
+
# For translation we set the codes of our source and target languages (only useful for mBART, the others will
|
342 |
+
# ignore those attributes).
|
343 |
+
if data_args.task.startswith("translation"):
|
344 |
+
if data_args.source_lang is not None:
|
345 |
+
tokenizer.src_lang = data_args.source_lang
|
346 |
+
if data_args.target_lang is not None:
|
347 |
+
tokenizer.tgt_lang = data_args.target_lang
|
348 |
+
|
349 |
+
# To serialize preprocess_function below, each of those four variables needs to be defined (even if we won't use
|
350 |
+
# them all).
|
351 |
+
source_lang, target_lang, text_column, summary_column = None, None, None, None
|
352 |
+
|
353 |
+
if data_args.task.startswith("summarization"):
|
354 |
+
# Get the column names for input/target.
|
355 |
+
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
|
356 |
+
if data_args.text_column is None:
|
357 |
+
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
|
358 |
+
else:
|
359 |
+
text_column = data_args.text_column
|
360 |
+
if data_args.summary_column is None:
|
361 |
+
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
|
362 |
+
else:
|
363 |
+
summary_column = data_args.summary_column
|
364 |
+
else:
|
365 |
+
# Get the language codes for input/target.
|
366 |
+
lang_search = re.match("translation_([a-z]+)_to_([a-z]+)", data_args.task)
|
367 |
+
if data_args.source_lang is not None:
|
368 |
+
source_lang = data_args.source_lang.split("_")[0]
|
369 |
+
else:
|
370 |
+
assert (
|
371 |
+
lang_search is not None
|
372 |
+
), "Provide a source language via --source_lang or rename your task 'translation_xx_to_yy'."
|
373 |
+
source_lang = lang_search.groups()[0]
|
374 |
+
|
375 |
+
if data_args.target_lang is not None:
|
376 |
+
target_lang = data_args.target_lang.split("_")[0]
|
377 |
+
else:
|
378 |
+
assert (
|
379 |
+
lang_search is not None
|
380 |
+
), "Provide a target language via --target_lang or rename your task 'translation_xx_to_yy'."
|
381 |
+
target_lang = lang_search.groups()[1]
|
382 |
+
|
383 |
+
# Temporarily set max_target_length for training.
|
384 |
+
max_target_length = data_args.max_target_length
|
385 |
+
padding = "max_length" if data_args.pad_to_max_length else False
|
386 |
+
|
387 |
+
def preprocess_function(examples):
|
388 |
+
if data_args.task.startswith("translation"):
|
389 |
+
inputs = [ex[source_lang] for ex in examples["translation"]]
|
390 |
+
targets = [ex[target_lang] for ex in examples["translation"]]
|
391 |
+
else:
|
392 |
+
inputs = examples[text_column]
|
393 |
+
targets = examples[summary_column]
|
394 |
+
inputs = [prefix + inp for inp in inputs]
|
395 |
+
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
|
396 |
+
|
397 |
+
# Setup the tokenizer for targets
|
398 |
+
with tokenizer.as_target_tokenizer():
|
399 |
+
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)
|
400 |
+
|
401 |
+
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
|
402 |
+
# padding in the loss.
|
403 |
+
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
|
404 |
+
labels["input_ids"] = [
|
405 |
+
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
|
406 |
+
]
|
407 |
+
|
408 |
+
model_inputs["labels"] = labels["input_ids"]
|
409 |
+
return model_inputs
|
410 |
+
|
411 |
+
if training_args.do_train:
|
412 |
+
train_dataset = datasets["train"]
|
413 |
+
if data_args.max_train_samples is not None:
|
414 |
+
train_dataset = train_dataset.select(range(data_args.max_train_samples))
|
415 |
+
train_dataset = train_dataset.map(
|
416 |
+
preprocess_function,
|
417 |
+
batched=True,
|
418 |
+
num_proc=data_args.preprocessing_num_workers,
|
419 |
+
remove_columns=column_names,
|
420 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
421 |
+
)
|
422 |
+
|
423 |
+
if training_args.do_eval:
|
424 |
+
max_target_length = data_args.val_max_target_length
|
425 |
+
eval_dataset = datasets["validation"]
|
426 |
+
if data_args.max_val_samples is not None:
|
427 |
+
eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
|
428 |
+
eval_dataset = eval_dataset.map(
|
429 |
+
preprocess_function,
|
430 |
+
batched=True,
|
431 |
+
num_proc=data_args.preprocessing_num_workers,
|
432 |
+
remove_columns=column_names,
|
433 |
+
load_from_cache_file=not data_args.overwrite_cache,
|
434 |
+
)
|
435 |
+
|
436 |
+
# Data collator
|
437 |
+
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
|
438 |
+
if data_args.pad_to_max_length:
|
439 |
+
data_collator = default_data_collator
|
440 |
+
else:
|
441 |
+
data_collator = DataCollatorForSeq2Seq(
|
442 |
+
tokenizer,
|
443 |
+
label_pad_token_id=label_pad_token_id,
|
444 |
+
pad_to_multiple_of=8 if training_args.fp16 else None,
|
445 |
+
)
|
446 |
+
|
447 |
+
# Metric
|
448 |
+
metric_name = "rouge" if data_args.task.startswith("summarization") else "sacrebleu"
|
449 |
+
metric = load_metric(metric_name)
|
450 |
+
|
451 |
+
def compute_metrics(eval_preds):
|
452 |
+
preds, labels = eval_preds
|
453 |
+
if isinstance(preds, tuple):
|
454 |
+
preds = preds[0]
|
455 |
+
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
456 |
+
if data_args.ignore_pad_token_for_loss:
|
457 |
+
# Replace -100 in the labels as we can't decode them.
|
458 |
+
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
459 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
460 |
+
|
461 |
+
# Some simple post-processing
|
462 |
+
decoded_preds = [pred.strip() for pred in decoded_preds]
|
463 |
+
decoded_labels = [label.strip() for label in decoded_labels]
|
464 |
+
if metric_name == "sacrebleu":
|
465 |
+
decoded_labels = [[label] for label in decoded_labels]
|
466 |
+
|
467 |
+
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
468 |
+
|
469 |
+
# Extract a few results from ROUGE
|
470 |
+
if metric_name == "rouge":
|
471 |
+
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
|
472 |
+
else:
|
473 |
+
result = {"bleu": result["score"]}
|
474 |
+
|
475 |
+
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
|
476 |
+
result["gen_len"] = np.mean(prediction_lens)
|
477 |
+
|
478 |
+
return result
|
479 |
+
|
480 |
+
# Initialize our Trainer
|
481 |
+
trainer = Seq2SeqTrainer(
|
482 |
+
model=model,
|
483 |
+
args=training_args,
|
484 |
+
train_dataset=train_dataset if training_args.do_train else None,
|
485 |
+
eval_dataset=eval_dataset if training_args.do_eval else None,
|
486 |
+
tokenizer=tokenizer,
|
487 |
+
data_collator=data_collator,
|
488 |
+
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
|
489 |
+
)
|
490 |
+
|
491 |
+
# Training
|
492 |
+
if training_args.do_train:
|
493 |
+
if last_checkpoint is not None:
|
494 |
+
checkpoint = last_checkpoint
|
495 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
496 |
+
checkpoint = model_args.model_name_or_path
|
497 |
+
else:
|
498 |
+
checkpoint = None
|
499 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
500 |
+
trainer.save_model() # Saves the tokenizer too for easy upload
|
501 |
+
|
502 |
+
output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
|
503 |
+
if trainer.is_world_process_zero():
|
504 |
+
with open(output_train_file, "w") as writer:
|
505 |
+
logger.info("***** Train results *****")
|
506 |
+
for key, value in sorted(train_result.metrics.items()):
|
507 |
+
logger.info(f" {key} = {value}")
|
508 |
+
writer.write(f"{key} = {value}\n")
|
509 |
+
|
510 |
+
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
|
511 |
+
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
|
512 |
+
|
513 |
+
# Evaluation
|
514 |
+
results = {}
|
515 |
+
if training_args.do_eval:
|
516 |
+
logger.info("*** Evaluate ***")
|
517 |
+
|
518 |
+
results = trainer.evaluate()
|
519 |
+
|
520 |
+
output_eval_file = os.path.join(training_args.output_dir, "eval_results_seq2seq.txt")
|
521 |
+
if trainer.is_world_process_zero():
|
522 |
+
with open(output_eval_file, "w") as writer:
|
523 |
+
logger.info("***** Eval results *****")
|
524 |
+
for key, value in sorted(results.items()):
|
525 |
+
logger.info(f" {key} = {value}")
|
526 |
+
writer.write(f"{key} = {value}\n")
|
527 |
+
|
528 |
+
return results
|
529 |
+
|
530 |
+
|
531 |
+
def _mp_fn(index):
|
532 |
+
# For xla_spawn (TPUs)
|
533 |
+
main()
|
534 |
+
|
535 |
+
|
536 |
+
if __name__ == "__main__":
|
537 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets==1.3.0
|
2 |
+
editdistance==0.6.0
|
3 |
+
nltk==3.7
|
4 |
+
numpy==1.22.3
|
5 |
+
spacy==3.0.5
|
6 |
+
streamlit==1.9.0
|
7 |
+
torch==1.11.0
|
8 |
+
tqdm==4.49.0
|
9 |
+
transformers==4.3.3
|
utils/__pycache__/spacy_tokenizer.cpython-38.pyc
ADDED
Binary file (2.16 kB). View file
|
|
utils/__pycache__/text_utils.cpython-37.pyc
ADDED
Binary file (1.81 kB). View file
|
|
utils/__pycache__/text_utils.cpython-38.pyc
ADDED
Binary file (1.82 kB). View file
|
|
utils/spacy_tokenizer.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spacy
|
2 |
+
from spacy.tokenizer import Tokenizer
|
3 |
+
from spacy.lang.char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER, CONCAT_QUOTES, LIST_ELLIPSES, LIST_ICONS, HYPHENS
|
4 |
+
from spacy.util import compile_infix_regex
|
5 |
+
from spacy.lang.en import English
|
6 |
+
nlp = English()
|
7 |
+
|
8 |
+
def get_tokenizer_gec(nlp):
|
9 |
+
infixes = (
|
10 |
+
LIST_ELLIPSES
|
11 |
+
+ LIST_ICONS
|
12 |
+
+ [
|
13 |
+
r"(?<=[0-9])[+\-\*^](?=[0-9-])",
|
14 |
+
r"(?<=[{al}{q}])\.(?=[{au}{q}])".format(
|
15 |
+
al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES
|
16 |
+
),
|
17 |
+
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
|
18 |
+
#r"(?<=[{a}])(?:{h})(?=[{a}])".format(a=ALPHA, h=HYPHENS),
|
19 |
+
r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA),
|
20 |
+
]
|
21 |
+
)
|
22 |
+
infix_re = compile_infix_regex(infixes)
|
23 |
+
return Tokenizer(nlp.vocab, prefix_search=nlp.tokenizer.prefix_search,
|
24 |
+
suffix_search=nlp.tokenizer.suffix_search,
|
25 |
+
infix_finditer=infix_re.finditer,
|
26 |
+
token_match=nlp.tokenizer.token_match,
|
27 |
+
rules=nlp.Defaults.tokenizer_exceptions)
|
28 |
+
|
29 |
+
|
30 |
+
def get_tokenizer_bea19(nlp):
|
31 |
+
infixes = (
|
32 |
+
LIST_ELLIPSES
|
33 |
+
+ LIST_ICONS
|
34 |
+
+ [
|
35 |
+
r"(?<=[0-9])[+\-\*^](?=[0-9-])",
|
36 |
+
r"(?<=[{al}{q}])\.(?=[{au}{q}])".format(
|
37 |
+
al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES
|
38 |
+
),
|
39 |
+
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
|
40 |
+
r"(?<=[{a}])(?:{h})(?=[{a}])".format(a=ALPHA, h=HYPHENS),
|
41 |
+
r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA),
|
42 |
+
]
|
43 |
+
)
|
44 |
+
infix_re = compile_infix_regex(infixes)
|
45 |
+
return Tokenizer(nlp.vocab, prefix_search=nlp.tokenizer.prefix_search,
|
46 |
+
suffix_search=nlp.tokenizer.suffix_search,
|
47 |
+
infix_finditer=infix_re.finditer,
|
48 |
+
token_match=nlp.tokenizer.token_match,
|
49 |
+
rules=nlp.Defaults.tokenizer_exceptions)
|
50 |
+
|
51 |
+
|
52 |
+
tokenizer_gec = get_tokenizer_gec(nlp)
|
53 |
+
tokenizer_bea19 = get_tokenizer_bea19(nlp)
|
54 |
+
|
55 |
+
|
56 |
+
def spacy_tokenize_gec(text):
|
57 |
+
nlp.tokenizer = tokenizer_gec
|
58 |
+
return [str(w) for w in nlp(text)]
|
59 |
+
|
60 |
+
def spacy_tokenize_bea19(text):
|
61 |
+
nlp.tokenizer = tokenizer_bea19
|
62 |
+
return [str(w) for w in nlp(text)]
|
utils/text_utils.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from nltk import sent_tokenize, word_tokenize
|
3 |
+
from nltk.tokenize.treebank import TreebankWordDetokenizer
|
4 |
+
detokenizer = TreebankWordDetokenizer()
|
5 |
+
|
6 |
+
def handle_dounble_quote(sent):
|
7 |
+
cur_str = ''
|
8 |
+
exp_left = True
|
9 |
+
ignore_space = False
|
10 |
+
for char in sent:
|
11 |
+
if char == '"':
|
12 |
+
if exp_left: #this is a left "
|
13 |
+
cur_str = cur_str.rstrip() + ' "'
|
14 |
+
exp_left = (not exp_left)
|
15 |
+
ignore_space = True
|
16 |
+
else: #this is a right "
|
17 |
+
cur_str = cur_str.rstrip() + '" '
|
18 |
+
exp_left = (not exp_left)
|
19 |
+
ignore_space = False
|
20 |
+
else:
|
21 |
+
if ignore_space: #expecting right
|
22 |
+
if char == ' ':
|
23 |
+
continue
|
24 |
+
else:
|
25 |
+
cur_str = cur_str + char
|
26 |
+
ignore_space = False
|
27 |
+
else:
|
28 |
+
cur_str = cur_str + char
|
29 |
+
cur_str = cur_str.strip()
|
30 |
+
cur_str = re.sub(r'[ ]+', ' ', cur_str)
|
31 |
+
return cur_str
|
32 |
+
|
33 |
+
def postprocess_space(sent):
|
34 |
+
sent = re.sub(r'[ ]+\.', '.', sent)
|
35 |
+
sent = re.sub(r'[ ]+,', ',', sent)
|
36 |
+
sent = re.sub(r'[ ]+!', '!', sent)
|
37 |
+
sent = re.sub(r'[ ]+\?', '?', sent)
|
38 |
+
sent = re.sub(r'\([ ]+', '(', sent)
|
39 |
+
sent = re.sub(r'[ ]+\)', ')', sent)
|
40 |
+
sent = re.sub(r' \'s( |\.|,|!|\?)', r"'s\1", sent)
|
41 |
+
sent = re.sub(r'n \'t( |\.|,|!|\?)', r"n't\1", sent)
|
42 |
+
return sent
|
43 |
+
|
44 |
+
def detokenize_sent(sent):
|
45 |
+
#Clean raw sent
|
46 |
+
sent = re.sub(r'\' s ', '\'s ', sent)
|
47 |
+
toks = sent.split()
|
48 |
+
if len([1 for t in toks if t=="'"]) % 2 == 0:
|
49 |
+
toks = ['"' if t=="'" else t for t in toks]
|
50 |
+
sent = ' '.join(toks)
|
51 |
+
#
|
52 |
+
sents = sent_tokenize(sent)
|
53 |
+
final_sents = []
|
54 |
+
for _sent in sents:
|
55 |
+
_sent = detokenizer.detokenize(_sent.split())
|
56 |
+
res = handle_dounble_quote(_sent)
|
57 |
+
if res == -1:
|
58 |
+
print ('unbalanced double quote')
|
59 |
+
print (_sent)
|
60 |
+
else:
|
61 |
+
_sent = res
|
62 |
+
final_sents.append(_sent)
|
63 |
+
sent = ' '.join(final_sents)
|
64 |
+
sent = postprocess_space(sent)
|
65 |
+
return sent
|