Spaces:
Runtime error
Runtime error
# Inspired by: https://github.com/lvwerra/trl/blob/main/examples/research_projects/stack_llama/scripts/rl_training.py | |
import math | |
from typing import TYPE_CHECKING, List, Optional | |
from torch.optim import AdamW | |
from transformers import DataCollatorWithPadding | |
from transformers.optimization import get_scheduler | |
from trl import PPOConfig | |
from ...data import get_dataset | |
from ...extras.callbacks import FixValueHeadModelCallback | |
from ...extras.misc import fix_valuehead_checkpoint | |
from ...extras.ploting import plot_loss | |
from ...model import load_model_and_tokenizer | |
from ...train.ppo.trainer import CustomPPOTrainer | |
from ...train.utils import create_ref_model, create_reward_model | |
if TYPE_CHECKING: | |
from transformers import Seq2SeqTrainingArguments, TrainerCallback | |
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments | |
def run_ppo( | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
finetuning_args: "FinetuningArguments", | |
generating_args: "GeneratingArguments", | |
callbacks: Optional[List["TrainerCallback"]] = None, | |
): | |
model, tokenizer = load_model_and_tokenizer( | |
model_args, finetuning_args, training_args.do_train, add_valuehead=True | |
) | |
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="ppo") | |
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training | |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | |
# Create reference model and reward model | |
ref_model = create_ref_model(model_args, finetuning_args, add_valuehead=True) | |
reward_model = create_reward_model(model, model_args, finetuning_args) | |
# Create ppo config | |
backward_batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps | |
ppo_config = PPOConfig( | |
model_name=model_args.model_name_or_path, | |
learning_rate=training_args.learning_rate, | |
mini_batch_size=training_args.per_device_train_batch_size, | |
batch_size=backward_batch_size * finetuning_args.ppo_buffer_size, | |
gradient_accumulation_steps=training_args.gradient_accumulation_steps, | |
ppo_epochs=finetuning_args.ppo_epochs, | |
max_grad_norm=training_args.max_grad_norm, | |
seed=training_args.seed, | |
optimize_device_cache=True, | |
target=finetuning_args.ppo_target, | |
log_with=finetuning_args.ppo_logger, | |
use_score_scaling=finetuning_args.ppo_score_norm, | |
use_score_norm=finetuning_args.ppo_score_norm, | |
whiten_rewards=finetuning_args.ppo_whiten_rewards, | |
accelerator_kwargs={"step_scheduler_with_optimizer": False}, | |
) | |
# Create optimizer and scheduler | |
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=training_args.learning_rate) | |
if training_args.max_steps > 0: | |
num_training_steps = training_args.max_steps | |
else: | |
total_train_batch_size = backward_batch_size * finetuning_args.ppo_buffer_size * training_args.world_size | |
num_training_steps = training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size) | |
lr_scheduler = get_scheduler( | |
training_args.lr_scheduler_type, | |
optimizer=optimizer, | |
num_warmup_steps=training_args.get_warmup_steps(num_training_steps), | |
num_training_steps=num_training_steps, | |
) | |
# Initialize our Trainer | |
ppo_trainer = CustomPPOTrainer( | |
model_args=model_args, | |
training_args=training_args, | |
finetuning_args=finetuning_args, | |
generating_args=generating_args, | |
callbacks=callbacks + [FixValueHeadModelCallback()], | |
reward_model=reward_model, | |
config=ppo_config, | |
model=model, | |
ref_model=ref_model, | |
tokenizer=tokenizer, | |
dataset=dataset, | |
data_collator=data_collator, | |
optimizer=optimizer, | |
lr_scheduler=lr_scheduler, | |
) | |
# Training | |
if training_args.do_train: | |
ppo_trainer.ppo_train(resume_from_checkpoint=training_args.resume_from_checkpoint) | |
ppo_trainer.save_model() | |
if training_args.should_save: | |
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors) | |
ppo_trainer.save_state() # must be called after save_model to have a folder | |
if ppo_trainer.is_world_process_zero() and finetuning_args.plot_loss: | |
plot_loss(training_args.output_dir, keys=["loss", "reward"]) | |