QandA_Generator / app.py
oceddyyy's picture
Update app.py
1e68964 verified
import json
import os
import spacy
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
import gradio as gr
from huggingface_hub import Repository
from datetime import datetime
from spacy.cli import download
# Load or download spaCy model
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
print("Downloading 'en_core_web_sm' model...")
download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Load Question Generation model
qg_model = AutoModelForSeq2SeqLM.from_pretrained("valhalla/t5-base-qa-qg-hl")
qg_tokenizer = AutoTokenizer.from_pretrained("valhalla/t5-base-qa-qg-hl", use_fast=True)
qg_pipeline = pipeline("text2text-generation", model=qg_model, tokenizer=qg_tokenizer)
# Global variable to accumulate Q&A
batch_data = []
# Utility functions
def extract_paragraph_facts(raw_text):
return [p.strip() for p in raw_text.strip().split("\n\n") if p.strip()]
def extract_noun_phrases(text):
doc = nlp(text)
return [np.text for np in doc.noun_chunks]
def auto_highlight_noun_phrase(text):
doc = nlp(text)
noun_phrases = sorted(doc.noun_chunks, key=lambda np: len(np.text), reverse=True)
for np in noun_phrases:
if len(np.text.split()) > 1 or np.root.pos_ == "NOUN":
return np.text
return text
def highlight_selected_phrase(fact, selected_np):
return fact.replace(selected_np, f"<hl>{selected_np}<hl>", 1)
def generate_single_qna(fact, noun_phrase, min_len, max_len, temperature, top_k, top_p):
hl_fact = highlight_selected_phrase(fact, noun_phrase)
try:
prompt = f"generate question: {hl_fact}"
output = qg_pipeline(
prompt,
min_length=min_len,
max_length=max_len,
temperature=temperature,
top_k=top_k,
top_p=top_p,
do_sample=True
)[0]
question = output.get("generated_text", "").strip()
if not question.endswith("?"):
question += "?"
except Exception as e:
question = f"Error generating question: {str(e)}"
return {"question": question, "answer": fact}
def generate_qna_all(input_text, selected_fact, selected_np, min_len, max_len, temperature, top_k, top_p):
facts = extract_paragraph_facts(input_text)
global batch_data
if selected_fact:
noun_phrase = selected_np if selected_np else auto_highlight_noun_phrase(selected_fact)
result = generate_single_qna(selected_fact, noun_phrase, min_len, max_len, temperature, top_k, top_p)
batch_data.append(result)
else:
for fact in facts:
noun_phrase = auto_highlight_noun_phrase(fact)
result = generate_single_qna(fact, noun_phrase, min_len, max_len, temperature, top_k, top_p)
batch_data.append(result)
return json.dumps(batch_data, indent=2, ensure_ascii=False), json.dumps(batch_data, indent=2, ensure_ascii=False)
def save_json_to_dataset():
try:
if not batch_data:
return "❌ No data to save. Generate some Q&A first."
hf_token = os.environ.get("QandA_Generator")
if not hf_token:
return "❌ HF_TOKEN not found in environment."
repo_id = "UniversityAIChatbot/University_Inquiries_AI_Chatbot"
target_file = "dataset.json"
local_dir = "hf_repo"
repo = Repository(
local_dir=local_dir,
clone_from=repo_id,
use_auth_token=hf_token,
repo_type="space"
)
repo.git_pull()
full_path = os.path.join(local_dir, target_file)
if os.path.exists(full_path):
with open(full_path, "r", encoding="utf-8") as f:
existing_data = json.load(f)
else:
existing_data = []
now = datetime.now()
for entry in batch_data:
entry["month"] = now.strftime("%B")
entry["year"] = now.year
updated_data = existing_data + batch_data
with open(full_path, "w", encoding="utf-8") as f:
json.dump(updated_data, f, indent=2, ensure_ascii=False)
repo.push_to_hub(commit_message="πŸ“₯ Add new Q&A to database.json")
batch_data.clear()
return "βœ… Data with timestamp successfully pushed to Space!"
except Exception as e:
return f"❌ Error: {str(e)}"
# New: Preview function
def preview_batch_data():
return json.dumps(batch_data, indent=2, ensure_ascii=False)
# New: Append from manual JSON editor
def append_json_to_batch(json_text):
global batch_data
try:
new_data = json.loads(json_text)
if isinstance(new_data, dict):
new_data = [new_data]
if not isinstance(new_data, list):
return "❌ Invalid format. Must be a list or object.", preview_batch_data()
batch_data.extend(new_data)
return "βœ… Successfully appended to batch_data.", preview_batch_data()
except Exception as e:
return f"❌ Error: {str(e)}", preview_batch_data()
# Dropdown callbacks
def on_extract_facts(text):
facts = extract_paragraph_facts(text)
default_fact = facts[0] if facts else None
return gr.update(choices=facts, value=default_fact), gr.update(choices=[], value=None)
def on_select_fact(fact):
noun_phrases = extract_noun_phrases(fact)
return gr.update(choices=noun_phrases, value=noun_phrases[0] if noun_phrases else None)
# UI
def main():
with gr.Blocks() as demo:
gr.Markdown("## Paragraph-to-Question Generator (Auto Q&A for HF Dataset)")
input_text = gr.Textbox(lines=10, label="Enter Data (Seperated by paragraph per question)")
with gr.Accordion("βš™οΈ Customize Question Generation", open=False):
extract_btn = gr.Button("Extract & Customize")
fact_dropdown = gr.Dropdown(label="Select a Fact", interactive=True)
np_dropdown = gr.Dropdown(label="Select Noun Phrase to Highlight (optional)", interactive=True)
extract_btn.click(fn=on_extract_facts, inputs=input_text, outputs=[fact_dropdown, np_dropdown])
fact_dropdown.change(fn=on_select_fact, inputs=fact_dropdown, outputs=np_dropdown)
gr.Markdown("πŸ”½ **Min Length**: Minimum number of tokens in the generated question.")
min_len = gr.Slider(5, 50, value=10, step=1, label="Min Length")
gr.Markdown("πŸ”Ό **Max Length**: Maximum number of tokens in the generated question.")
max_len = gr.Slider(20, 100, value=64, step=1, label="Max Length")
gr.Markdown("🌑️ **Temperature**: Controls randomness. Lower = more predictable, higher = more creative.")
temperature = gr.Slider(0.1, 1.5, value=1.0, step=0.1, label="Temperature")
gr.Markdown("🎯 **Top-k Sampling**: Limits sampling to the top-k most likely words.")
top_k = gr.Slider(0, 100, value=50, step=1, label="Top-k")
gr.Markdown("🎲 **Top-p (Nucleus Sampling)**: Selects from the smallest set of words with a cumulative probability > p.")
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
gr.Markdown("✏️ You can manually edit the generated JSON here or paste your own in the same format.")
output_json = gr.Textbox(
lines=14,
label="Q&A JSON",
interactive=True,
placeholder='[\n{\n"question": "Your question?",\n"answer": "Your answer."\n}\n]'
)
preview_box = gr.Textbox(
lines=14,
label="πŸ“¦ Preview",
interactive=False
)
with gr.Row():
generate_btn = gr.Button("Generate Q&A")
append_btn = gr.Button("βž• Add to Dataset")
send_btn = gr.Button("πŸ“€ Send to Dataset")
send_status = gr.Textbox(label="Save Status", interactive=False)
generate_btn.click(
fn=generate_qna_all,
inputs=[input_text, fact_dropdown, np_dropdown, min_len, max_len, temperature, top_k, top_p],
outputs=[output_json, preview_box]
)
append_btn.click(
fn=append_json_to_batch,
inputs=output_json,
outputs=[send_status, preview_box]
)
send_btn.click(fn=save_json_to_dataset, inputs=None, outputs=send_status)
demo.launch()
if __name__ == "__main__":
main()