tldw / App_Function_Libraries /RAG /ChromaDB_Library.py
oceansweep's picture
Upload 6 files
cfbac61 verified
raw
history blame
11.5 kB
import configparser
import logging
import sqlite3
from typing import List, Dict, Any
import chromadb
import requests
from chromadb import Settings
from App_Function_Libraries.Chunk_Lib import improved_chunking_process
from App_Function_Libraries.DB.DB_Manager import add_media_chunk, update_fts_for_media
from App_Function_Libraries.LLM_API_Calls import get_openai_embeddings
#######################################################################################################################
#
# Functions for ChromaDB
# Get ChromaDB settings
# Load configuration
config = configparser.ConfigParser()
config.read('config.txt')
chroma_db_path = config.get('Database', 'chroma_db_path', fallback='chroma_db')
chroma_client = chromadb.PersistentClient(path=chroma_db_path, settings=Settings(anonymized_telemetry=False))
# Get embedding settings
embedding_provider = config.get('Embeddings', 'provider', fallback='openai')
embedding_model = config.get('Embeddings', 'model', fallback='text-embedding-3-small')
embedding_api_key = config.get('Embeddings', 'api_key', fallback='')
embedding_api_url = config.get('Embeddings', 'api_url', fallback='')
# Get chunking options
chunk_options = {
'method': config.get('Chunking', 'method', fallback='words'),
'max_size': config.getint('Chunking', 'max_size', fallback=400),
'overlap': config.getint('Chunking', 'overlap', fallback=200),
'adaptive': config.getboolean('Chunking', 'adaptive', fallback=False),
'multi_level': config.getboolean('Chunking', 'multi_level', fallback=False),
'language': config.get('Chunking', 'language', fallback='english')
}
def auto_update_chroma_embeddings(media_id: int, content: str):
"""
Automatically update ChromaDB embeddings when a new item is ingested into the SQLite database.
:param media_id: The ID of the newly ingested media item
:param content: The content of the newly ingested media item
"""
collection_name = f"media_{media_id}"
# Initialize or get the ChromaDB collection
collection = chroma_client.get_or_create_collection(name=collection_name)
# Check if embeddings already exist for this media_id
existing_embeddings = collection.get(ids=[f"{media_id}_chunk_{i}" for i in range(len(content))])
if existing_embeddings and len(existing_embeddings) > 0:
logging.info(f"Embeddings already exist for media ID {media_id}, skipping...")
else:
# Process and store content if embeddings do not already exist
process_and_store_content(content, collection_name, media_id)
logging.info(f"Updated ChromaDB embeddings for media ID: {media_id}")
# Function to process content, create chunks, embeddings, and store in ChromaDB and SQLite
def process_and_store_content(content: str, collection_name: str, media_id: int):
# Process the content into chunks
chunks = improved_chunking_process(content, chunk_options)
texts = [chunk['text'] for chunk in chunks]
# Generate embeddings for each chunk
embeddings = [create_embedding(text) for text in texts]
# Create unique IDs for each chunk using the media_id and chunk index
ids = [f"{media_id}_chunk_{i}" for i in range(len(texts))]
# Store the texts, embeddings, and IDs in ChromaDB
store_in_chroma(collection_name, texts, embeddings, ids)
# Store the chunk metadata in SQLite
for i, chunk in enumerate(chunks):
add_media_chunk(media_id, chunk['text'], chunk['start'], chunk['end'], ids[i])
# Update the FTS table
update_fts_for_media(media_id)
# Function to store documents and their embeddings in ChromaDB
def store_in_chroma(collection_name: str, texts: List[str], embeddings: List[List[float]], ids: List[str]):
collection = chroma_client.get_or_create_collection(name=collection_name)
collection.add(
documents=texts,
embeddings=embeddings,
ids=ids
)
# Function to perform vector search using ChromaDB
def vector_search(collection_name: str, query: str, k: int = 10) -> List[str]:
query_embedding = create_embedding(query)
collection = chroma_client.get_collection(name=collection_name)
results = collection.query(
query_embeddings=[query_embedding],
n_results=k
)
return results['documents'][0]
def create_embedding(text: str) -> List[float]:
global embedding_provider, embedding_model, embedding_api_url, embedding_api_key
if embedding_provider == 'openai':
return get_openai_embeddings(text, embedding_model)
elif embedding_provider == 'local':
response = requests.post(
embedding_api_url,
json={"text": text, "model": embedding_model},
headers={"Authorization": f"Bearer {embedding_api_key}"}
)
return response.json()['embedding']
elif embedding_provider == 'huggingface':
from transformers import AutoTokenizer, AutoModel
import torch
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
model = AutoModel.from_pretrained(embedding_model)
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
# Use the mean of the last hidden state as the sentence embedding
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings[0].tolist() # Convert to list for consistency
else:
raise ValueError(f"Unsupported embedding provider: {embedding_provider}")
def create_all_embeddings(api_choice: str, model_or_url: str) -> str:
try:
all_content = get_all_content_from_database()
if not all_content:
return "No content found in the database."
texts_to_embed = []
embeddings_to_store = []
ids_to_store = []
collection_name = "all_content_embeddings"
# Initialize or get the ChromaDB collection
collection = chroma_client.get_or_create_collection(name=collection_name)
for content_item in all_content:
media_id = content_item['id']
text = content_item['content']
# Check if the embedding already exists in ChromaDB
embedding_exists = collection.get(ids=[f"doc_{media_id}"])
if embedding_exists:
logging.info(f"Embedding already exists for media ID {media_id}, skipping...")
continue # Skip if embedding already exists
# Create the embedding
if api_choice == "openai":
embedding = create_openai_embedding(text, model_or_url)
else: # Llama.cpp
embedding = create_llamacpp_embedding(text, model_or_url)
# Collect the text, embedding, and ID for batch storage
texts_to_embed.append(text)
embeddings_to_store.append(embedding)
ids_to_store.append(f"doc_{media_id}")
# Store all new embeddings in ChromaDB
if texts_to_embed and embeddings_to_store:
store_in_chroma(collection_name, texts_to_embed, embeddings_to_store, ids_to_store)
return "Embeddings created and stored successfully for all new content."
except Exception as e:
logging.error(f"Error during embedding creation: {str(e)}")
return f"Error: {str(e)}"
def create_openai_embedding(text: str, model: str) -> List[float]:
openai_api_key = config['API']['openai_api_key']
embedding = get_openai_embeddings(text, model)
return embedding
def create_llamacpp_embedding(text: str, api_url: str) -> List[float]:
response = requests.post(
api_url,
json={"input": text}
)
if response.status_code == 200:
return response.json()['embedding']
else:
raise Exception(f"Error from Llama.cpp API: {response.text}")
def get_all_content_from_database() -> List[Dict[str, Any]]:
"""
Retrieve all media content from the database that requires embedding.
Returns:
List[Dict[str, Any]]: A list of dictionaries, each containing the media ID, content, title, and other relevant fields.
"""
try:
from App_Function_Libraries.DB.DB_Manager import db
with db.get_connection() as conn:
cursor = conn.cursor()
cursor.execute("""
SELECT id, content, title, author, type
FROM Media
WHERE is_trash = 0 -- Exclude items marked as trash
""")
media_items = cursor.fetchall()
# Convert the results into a list of dictionaries
all_content = [
{
'id': item[0],
'content': item[1],
'title': item[2],
'author': item[3],
'type': item[4]
}
for item in media_items
]
return all_content
except sqlite3.Error as e:
logging.error(f"Error retrieving all content from database: {e}")
from App_Function_Libraries.DB.SQLite_DB import DatabaseError
raise DatabaseError(f"Error retrieving all content from database: {e}")
def store_in_chroma_with_citation(collection_name: str, texts: List[str], embeddings: List[List[float]], ids: List[str], sources: List[str]):
collection = chroma_client.get_or_create_collection(name=collection_name)
collection.add(
documents=texts,
embeddings=embeddings,
ids=ids,
metadatas=[{'source': source} for source in sources]
)
def check_embedding_status(selected_item):
if not selected_item:
return "Please select an item", ""
item_id = selected_item.split('(')[0].strip()
collection = chroma_client.get_or_create_collection(name="all_content_embeddings")
result = collection.get(ids=[f"doc_{item_id}"])
if result['ids']:
embedding = result['embeddings'][0]
embedding_preview = str(embedding[:50]) # Convert first 50 elements to string
return f"Embedding exists for item: {item_id}", f"Embedding preview: {embedding_preview}..."
else:
return f"No embedding found for item: {item_id}", ""
def create_new_embedding(selected_item, api_choice, openai_model, llamacpp_url):
if not selected_item:
return "Please select an item"
item_id = selected_item.split('(')[0].strip()
items = get_all_content_from_database()
item = next((item for item in items if item['title'] == item_id), None)
if not item:
return f"Item not found: {item_id}"
try:
if api_choice == "OpenAI":
embedding = create_embedding(item['content'])
else: # Llama.cpp
embedding = create_embedding(item['content'])
collection_name = "all_content_embeddings"
store_in_chroma(collection_name, [item['content']], [embedding], [f"doc_{item['id']}"])
return f"New embedding created and stored for item: {item_id}"
except Exception as e:
return f"Error creating embedding: {str(e)}"
#
# End of Functions for ChromaDB
#######################################################################################################################