Spaces:
Sleeping
Sleeping
oceansweep
commited on
Commit
•
0c30c9f
1
Parent(s):
70bce05
Update App_Function_Libraries/Audio_Transcription_Lib.py
Browse files
App_Function_Libraries/Audio_Transcription_Lib.py
CHANGED
@@ -1,254 +1,202 @@
|
|
1 |
-
# Audio_Transcription_Lib.py
|
2 |
-
#########################################
|
3 |
-
# Transcription Library
|
4 |
-
# This library is used to perform transcription of audio files.
|
5 |
-
# Currently, uses faster_whisper for transcription.
|
6 |
-
#
|
7 |
-
####################
|
8 |
-
# Function List
|
9 |
-
#
|
10 |
-
# 1. convert_to_wav(video_file_path, offset=0, overwrite=False)
|
11 |
-
# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False)
|
12 |
-
#
|
13 |
-
####################
|
14 |
-
#
|
15 |
-
# Import necessary libraries to run solo for testing
|
16 |
-
import gc
|
17 |
-
import json
|
18 |
-
import logging
|
19 |
-
import os
|
20 |
-
import queue
|
21 |
-
import sys
|
22 |
-
import subprocess
|
23 |
-
import tempfile
|
24 |
-
import threading
|
25 |
-
import time
|
26 |
-
import configparser
|
27 |
-
# DEBUG Imports
|
28 |
-
#from memory_profiler import profile
|
29 |
-
import pyaudio
|
30 |
-
|
31 |
-
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
|
32 |
-
|
33 |
-
# Import Local
|
34 |
-
#
|
35 |
-
#######################################################################################################################
|
36 |
-
# Function Definitions
|
37 |
-
#
|
38 |
-
|
39 |
-
# Convert video .m4a into .wav using ffmpeg
|
40 |
-
# ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav"
|
41 |
-
# https://www.gyan.dev/ffmpeg/builds/
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
whisper_model_instance = None
|
46 |
-
config = load_comprehensive_config()
|
47 |
-
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
|
48 |
-
|
49 |
-
|
50 |
-
# FIXME: This is a temporary solution.
|
51 |
-
# This doesn't clear older models, which means potentially a lot of memory is being used...
|
52 |
-
def get_whisper_model(model_name, device):
|
53 |
-
global whisper_model_instance
|
54 |
-
if whisper_model_instance is None:
|
55 |
-
from faster_whisper import WhisperModel
|
56 |
-
logging.info(f"Initializing new WhisperModel with size {model_name} on device {device}")
|
57 |
-
whisper_model_instance = WhisperModel(model_name, device=device)
|
58 |
-
return whisper_model_instance
|
59 |
-
|
60 |
-
|
61 |
-
# os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
|
62 |
-
#DEBUG
|
63 |
-
#@profile
|
64 |
-
def convert_to_wav(video_file_path, offset=0, overwrite=False):
|
65 |
-
out_path = os.path.splitext(video_file_path)[0] + ".wav"
|
66 |
-
|
67 |
-
if os.path.exists(out_path) and not overwrite:
|
68 |
-
print(f"File '{out_path}' already exists. Skipping conversion.")
|
69 |
-
logging.info(f"Skipping conversion as file already exists: {out_path}")
|
70 |
-
return out_path
|
71 |
-
print("Starting conversion process of .m4a to .WAV")
|
72 |
-
out_path = os.path.splitext(video_file_path)[0] + ".wav"
|
73 |
-
|
74 |
-
try:
|
75 |
-
if os.name == "nt":
|
76 |
-
logging.debug("ffmpeg being ran on windows")
|
77 |
-
|
78 |
-
if sys.platform.startswith('win'):
|
79 |
-
ffmpeg_cmd = ".\\Bin\\ffmpeg.exe"
|
80 |
-
logging.debug(f"ffmpeg_cmd: {ffmpeg_cmd}")
|
81 |
-
else:
|
82 |
-
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
|
83 |
-
|
84 |
-
command = [
|
85 |
-
ffmpeg_cmd, # Assuming the working directory is correctly set where .\Bin exists
|
86 |
-
"-ss", "00:00:00", # Start at the beginning of the video
|
87 |
-
"-i", video_file_path,
|
88 |
-
"-ar", "16000", # Audio sample rate
|
89 |
-
"-ac", "1", # Number of audio channels
|
90 |
-
"-c:a", "pcm_s16le", # Audio codec
|
91 |
-
out_path
|
92 |
-
]
|
93 |
-
try:
|
94 |
-
# Redirect stdin from null device to prevent ffmpeg from waiting for input
|
95 |
-
with open(os.devnull, 'rb') as null_file:
|
96 |
-
result = subprocess.run(command, stdin=null_file, text=True, capture_output=True)
|
97 |
-
if result.returncode == 0:
|
98 |
-
logging.info("FFmpeg executed successfully")
|
99 |
-
logging.debug("FFmpeg output: %s", result.stdout)
|
100 |
-
else:
|
101 |
-
logging.error("Error in running FFmpeg")
|
102 |
-
logging.error("FFmpeg stderr: %s", result.stderr)
|
103 |
-
raise RuntimeError(f"FFmpeg error: {result.stderr}")
|
104 |
-
except Exception as e:
|
105 |
-
logging.error("Error occurred - ffmpeg doesn't like windows")
|
106 |
-
raise RuntimeError("ffmpeg failed")
|
107 |
-
elif os.name == "posix":
|
108 |
-
os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
|
109 |
-
else:
|
110 |
-
raise RuntimeError("Unsupported operating system")
|
111 |
-
logging.info("Conversion to WAV completed: %s", out_path)
|
112 |
-
except subprocess.CalledProcessError as e:
|
113 |
-
logging.error("Error executing FFmpeg command: %s", str(e))
|
114 |
-
raise RuntimeError("Error converting video file to WAV")
|
115 |
-
except Exception as e:
|
116 |
-
logging.error("speech-to-text: Error transcribing audio: %s", str(e))
|
117 |
-
return {"error": str(e)}
|
118 |
-
gc.collect()
|
119 |
-
return out_path
|
120 |
-
|
121 |
-
|
122 |
-
# Transcribe .wav into .segments.json
|
123 |
-
#DEBUG
|
124 |
-
#@profile
|
125 |
-
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='medium.en', vad_filter=False, diarize=False):
|
126 |
-
global whisper_model_instance, processing_choice
|
127 |
-
logging.info('speech-to-text: Loading faster_whisper model: %s', whisper_model)
|
128 |
-
|
129 |
-
time_start = time.time()
|
130 |
-
if audio_file_path is None:
|
131 |
-
raise ValueError("speech-to-text: No audio file provided")
|
132 |
-
logging.info("speech-to-text: Audio file path: %s", audio_file_path)
|
133 |
-
|
134 |
-
try:
|
135 |
-
_, file_ending = os.path.splitext(audio_file_path)
|
136 |
-
out_file = audio_file_path.replace(file_ending, ".segments.json")
|
137 |
-
prettified_out_file = audio_file_path.replace(file_ending, ".segments_pretty.json")
|
138 |
-
if os.path.exists(out_file):
|
139 |
-
logging.info("speech-to-text: Segments file already exists: %s", out_file)
|
140 |
-
with open(out_file) as f:
|
141 |
-
global segments
|
142 |
-
segments = json.load(f)
|
143 |
-
return segments
|
144 |
-
|
145 |
-
logging.info('speech-to-text: Starting transcription...')
|
146 |
-
options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter)
|
147 |
-
transcribe_options = dict(task="transcribe", **options)
|
148 |
-
# use function and config at top of file
|
149 |
-
whisper_model_instance = get_whisper_model(whisper_model, processing_choice)
|
150 |
-
segments_raw, info = whisper_model_instance.transcribe(audio_file_path, **transcribe_options)
|
151 |
-
|
152 |
-
segments = []
|
153 |
-
for segment_chunk in segments_raw:
|
154 |
-
chunk = {
|
155 |
-
"Time_Start": segment_chunk.start,
|
156 |
-
"Time_End": segment_chunk.end,
|
157 |
-
"Text": segment_chunk.text
|
158 |
-
}
|
159 |
-
logging.debug("Segment: %s", chunk)
|
160 |
-
segments.append(chunk)
|
161 |
-
# Print to verify its working
|
162 |
-
print(f"{segment_chunk.start:.2f}s - {segment_chunk.end:.2f}s | {segment_chunk.text}")
|
163 |
-
|
164 |
-
# Log it as well.
|
165 |
-
logging.debug(
|
166 |
-
f"Transcribed Segment: {segment_chunk.start:.2f}s - {segment_chunk.end:.2f}s | {segment_chunk.text}")
|
167 |
-
|
168 |
-
if segments:
|
169 |
-
segments[0]["Text"] = f"This text was transcribed using whisper model: {whisper_model}\n\n" + segments[0]["Text"]
|
170 |
-
|
171 |
-
if not segments:
|
172 |
-
raise RuntimeError("No transcription produced. The audio file may be invalid or empty.")
|
173 |
-
logging.info("speech-to-text: Transcription completed in %.2f seconds", time.time() - time_start)
|
174 |
-
|
175 |
-
# Save the segments to a JSON file - prettified and non-prettified
|
176 |
-
# FIXME so this is an optional flag to save either the prettified json file or the normal one
|
177 |
-
save_json = True
|
178 |
-
if save_json:
|
179 |
-
logging.info("speech-to-text: Saving segments to JSON file")
|
180 |
-
output_data = {'segments': segments}
|
181 |
-
|
182 |
-
logging.info("speech-to-text: Saving prettified JSON to %s", prettified_out_file)
|
183 |
-
with open(prettified_out_file, 'w') as f:
|
184 |
-
json.dump(output_data, f, indent=2)
|
185 |
-
|
186 |
-
logging.info("speech-to-text: Saving JSON to %s", out_file)
|
187 |
-
with open(out_file, 'w') as f:
|
188 |
-
json.dump(output_data, f)
|
189 |
-
|
190 |
-
logging.debug(f"speech-to-text: returning {segments[:500]}")
|
191 |
-
gc.collect()
|
192 |
-
return segments
|
193 |
-
|
194 |
-
except Exception as e:
|
195 |
-
logging.error("speech-to-text: Error transcribing audio: %s", str(e))
|
196 |
-
raise RuntimeError("speech-to-text: Error transcribing audio")
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
channels=1,
|
203 |
-
rate=sample_rate,
|
204 |
-
input=True,
|
205 |
-
frames_per_buffer=chunk_size)
|
206 |
-
|
207 |
-
print("Recording...")
|
208 |
-
frames = []
|
209 |
-
stop_recording = threading.Event()
|
210 |
-
audio_queue = queue.Queue()
|
211 |
-
|
212 |
-
def audio_callback():
|
213 |
-
for _ in range(0, int(sample_rate / chunk_size * duration)):
|
214 |
-
if stop_recording.is_set():
|
215 |
-
break
|
216 |
-
data = stream.read(chunk_size)
|
217 |
-
audio_queue.put(data)
|
218 |
-
|
219 |
-
audio_thread = threading.Thread(target=audio_callback)
|
220 |
-
audio_thread.start()
|
221 |
-
|
222 |
-
return p, stream, audio_queue, stop_recording, audio_thread
|
223 |
-
|
224 |
-
|
225 |
-
def stop_recording(p, stream, audio_queue, stop_recording_event, audio_thread):
|
226 |
-
stop_recording_event.set()
|
227 |
-
audio_thread.join()
|
228 |
-
|
229 |
-
frames = []
|
230 |
-
while not audio_queue.empty():
|
231 |
-
frames.append(audio_queue.get())
|
232 |
-
|
233 |
-
print("Recording finished.")
|
234 |
-
|
235 |
-
stream.stop_stream()
|
236 |
-
stream.close()
|
237 |
-
p.terminate()
|
238 |
-
|
239 |
-
return b''.join(frames)
|
240 |
-
|
241 |
-
def save_audio_temp(audio_data, sample_rate=16000):
|
242 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
243 |
-
import wave
|
244 |
-
wf = wave.open(temp_file.name, 'wb')
|
245 |
-
wf.setnchannels(1)
|
246 |
-
wf.setsampwidth(2)
|
247 |
-
wf.setframerate(sample_rate)
|
248 |
-
wf.writeframes(audio_data)
|
249 |
-
wf.close()
|
250 |
-
return temp_file.name
|
251 |
-
|
252 |
-
#
|
253 |
-
#
|
254 |
#######################################################################################################################
|
|
|
1 |
+
# Audio_Transcription_Lib.py
|
2 |
+
#########################################
|
3 |
+
# Transcription Library
|
4 |
+
# This library is used to perform transcription of audio files.
|
5 |
+
# Currently, uses faster_whisper for transcription.
|
6 |
+
#
|
7 |
+
####################
|
8 |
+
# Function List
|
9 |
+
#
|
10 |
+
# 1. convert_to_wav(video_file_path, offset=0, overwrite=False)
|
11 |
+
# 2. speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False)
|
12 |
+
#
|
13 |
+
####################
|
14 |
+
#
|
15 |
+
# Import necessary libraries to run solo for testing
|
16 |
+
import gc
|
17 |
+
import json
|
18 |
+
import logging
|
19 |
+
import os
|
20 |
+
import queue
|
21 |
+
import sys
|
22 |
+
import subprocess
|
23 |
+
import tempfile
|
24 |
+
import threading
|
25 |
+
import time
|
26 |
+
import configparser
|
27 |
+
# DEBUG Imports
|
28 |
+
#from memory_profiler import profile
|
29 |
+
#import pyaudio
|
30 |
+
|
31 |
+
from App_Function_Libraries.Utils.Utils import load_comprehensive_config
|
32 |
+
|
33 |
+
# Import Local
|
34 |
+
#
|
35 |
+
#######################################################################################################################
|
36 |
+
# Function Definitions
|
37 |
+
#
|
38 |
+
|
39 |
+
# Convert video .m4a into .wav using ffmpeg
|
40 |
+
# ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav"
|
41 |
+
# https://www.gyan.dev/ffmpeg/builds/
|
42 |
+
#
|
43 |
+
|
44 |
+
|
45 |
+
whisper_model_instance = None
|
46 |
+
config = load_comprehensive_config()
|
47 |
+
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu')
|
48 |
+
|
49 |
+
|
50 |
+
# FIXME: This is a temporary solution.
|
51 |
+
# This doesn't clear older models, which means potentially a lot of memory is being used...
|
52 |
+
def get_whisper_model(model_name, device):
|
53 |
+
global whisper_model_instance
|
54 |
+
if whisper_model_instance is None:
|
55 |
+
from faster_whisper import WhisperModel
|
56 |
+
logging.info(f"Initializing new WhisperModel with size {model_name} on device {device}")
|
57 |
+
whisper_model_instance = WhisperModel(model_name, device=device)
|
58 |
+
return whisper_model_instance
|
59 |
+
|
60 |
+
|
61 |
+
# os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
|
62 |
+
#DEBUG
|
63 |
+
#@profile
|
64 |
+
def convert_to_wav(video_file_path, offset=0, overwrite=False):
|
65 |
+
out_path = os.path.splitext(video_file_path)[0] + ".wav"
|
66 |
+
|
67 |
+
if os.path.exists(out_path) and not overwrite:
|
68 |
+
print(f"File '{out_path}' already exists. Skipping conversion.")
|
69 |
+
logging.info(f"Skipping conversion as file already exists: {out_path}")
|
70 |
+
return out_path
|
71 |
+
print("Starting conversion process of .m4a to .WAV")
|
72 |
+
out_path = os.path.splitext(video_file_path)[0] + ".wav"
|
73 |
+
|
74 |
+
try:
|
75 |
+
if os.name == "nt":
|
76 |
+
logging.debug("ffmpeg being ran on windows")
|
77 |
+
|
78 |
+
if sys.platform.startswith('win'):
|
79 |
+
ffmpeg_cmd = ".\\Bin\\ffmpeg.exe"
|
80 |
+
logging.debug(f"ffmpeg_cmd: {ffmpeg_cmd}")
|
81 |
+
else:
|
82 |
+
ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems
|
83 |
+
|
84 |
+
command = [
|
85 |
+
ffmpeg_cmd, # Assuming the working directory is correctly set where .\Bin exists
|
86 |
+
"-ss", "00:00:00", # Start at the beginning of the video
|
87 |
+
"-i", video_file_path,
|
88 |
+
"-ar", "16000", # Audio sample rate
|
89 |
+
"-ac", "1", # Number of audio channels
|
90 |
+
"-c:a", "pcm_s16le", # Audio codec
|
91 |
+
out_path
|
92 |
+
]
|
93 |
+
try:
|
94 |
+
# Redirect stdin from null device to prevent ffmpeg from waiting for input
|
95 |
+
with open(os.devnull, 'rb') as null_file:
|
96 |
+
result = subprocess.run(command, stdin=null_file, text=True, capture_output=True)
|
97 |
+
if result.returncode == 0:
|
98 |
+
logging.info("FFmpeg executed successfully")
|
99 |
+
logging.debug("FFmpeg output: %s", result.stdout)
|
100 |
+
else:
|
101 |
+
logging.error("Error in running FFmpeg")
|
102 |
+
logging.error("FFmpeg stderr: %s", result.stderr)
|
103 |
+
raise RuntimeError(f"FFmpeg error: {result.stderr}")
|
104 |
+
except Exception as e:
|
105 |
+
logging.error("Error occurred - ffmpeg doesn't like windows")
|
106 |
+
raise RuntimeError("ffmpeg failed")
|
107 |
+
elif os.name == "posix":
|
108 |
+
os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"')
|
109 |
+
else:
|
110 |
+
raise RuntimeError("Unsupported operating system")
|
111 |
+
logging.info("Conversion to WAV completed: %s", out_path)
|
112 |
+
except subprocess.CalledProcessError as e:
|
113 |
+
logging.error("Error executing FFmpeg command: %s", str(e))
|
114 |
+
raise RuntimeError("Error converting video file to WAV")
|
115 |
+
except Exception as e:
|
116 |
+
logging.error("speech-to-text: Error transcribing audio: %s", str(e))
|
117 |
+
return {"error": str(e)}
|
118 |
+
gc.collect()
|
119 |
+
return out_path
|
120 |
+
|
121 |
+
|
122 |
+
# Transcribe .wav into .segments.json
|
123 |
+
#DEBUG
|
124 |
+
#@profile
|
125 |
+
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='medium.en', vad_filter=False, diarize=False):
|
126 |
+
global whisper_model_instance, processing_choice
|
127 |
+
logging.info('speech-to-text: Loading faster_whisper model: %s', whisper_model)
|
128 |
+
|
129 |
+
time_start = time.time()
|
130 |
+
if audio_file_path is None:
|
131 |
+
raise ValueError("speech-to-text: No audio file provided")
|
132 |
+
logging.info("speech-to-text: Audio file path: %s", audio_file_path)
|
133 |
+
|
134 |
+
try:
|
135 |
+
_, file_ending = os.path.splitext(audio_file_path)
|
136 |
+
out_file = audio_file_path.replace(file_ending, ".segments.json")
|
137 |
+
prettified_out_file = audio_file_path.replace(file_ending, ".segments_pretty.json")
|
138 |
+
if os.path.exists(out_file):
|
139 |
+
logging.info("speech-to-text: Segments file already exists: %s", out_file)
|
140 |
+
with open(out_file) as f:
|
141 |
+
global segments
|
142 |
+
segments = json.load(f)
|
143 |
+
return segments
|
144 |
+
|
145 |
+
logging.info('speech-to-text: Starting transcription...')
|
146 |
+
options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter)
|
147 |
+
transcribe_options = dict(task="transcribe", **options)
|
148 |
+
# use function and config at top of file
|
149 |
+
whisper_model_instance = get_whisper_model(whisper_model, processing_choice)
|
150 |
+
segments_raw, info = whisper_model_instance.transcribe(audio_file_path, **transcribe_options)
|
151 |
+
|
152 |
+
segments = []
|
153 |
+
for segment_chunk in segments_raw:
|
154 |
+
chunk = {
|
155 |
+
"Time_Start": segment_chunk.start,
|
156 |
+
"Time_End": segment_chunk.end,
|
157 |
+
"Text": segment_chunk.text
|
158 |
+
}
|
159 |
+
logging.debug("Segment: %s", chunk)
|
160 |
+
segments.append(chunk)
|
161 |
+
# Print to verify its working
|
162 |
+
print(f"{segment_chunk.start:.2f}s - {segment_chunk.end:.2f}s | {segment_chunk.text}")
|
163 |
+
|
164 |
+
# Log it as well.
|
165 |
+
logging.debug(
|
166 |
+
f"Transcribed Segment: {segment_chunk.start:.2f}s - {segment_chunk.end:.2f}s | {segment_chunk.text}")
|
167 |
+
|
168 |
+
if segments:
|
169 |
+
segments[0]["Text"] = f"This text was transcribed using whisper model: {whisper_model}\n\n" + segments[0]["Text"]
|
170 |
+
|
171 |
+
if not segments:
|
172 |
+
raise RuntimeError("No transcription produced. The audio file may be invalid or empty.")
|
173 |
+
logging.info("speech-to-text: Transcription completed in %.2f seconds", time.time() - time_start)
|
174 |
+
|
175 |
+
# Save the segments to a JSON file - prettified and non-prettified
|
176 |
+
# FIXME so this is an optional flag to save either the prettified json file or the normal one
|
177 |
+
save_json = True
|
178 |
+
if save_json:
|
179 |
+
logging.info("speech-to-text: Saving segments to JSON file")
|
180 |
+
output_data = {'segments': segments}
|
181 |
+
|
182 |
+
logging.info("speech-to-text: Saving prettified JSON to %s", prettified_out_file)
|
183 |
+
with open(prettified_out_file, 'w') as f:
|
184 |
+
json.dump(output_data, f, indent=2)
|
185 |
+
|
186 |
+
logging.info("speech-to-text: Saving JSON to %s", out_file)
|
187 |
+
with open(out_file, 'w') as f:
|
188 |
+
json.dump(output_data, f)
|
189 |
+
|
190 |
+
logging.debug(f"speech-to-text: returning {segments[:500]}")
|
191 |
+
gc.collect()
|
192 |
+
return segments
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
logging.error("speech-to-text: Error transcribing audio: %s", str(e))
|
196 |
+
raise RuntimeError("speech-to-text: Error transcribing audio")
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
#
|
201 |
+
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
#######################################################################################################################
|