Spaces:
Running
Running
# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py | |
# TODO: rebase on diffusers/pipelines/animatediff/pipeline_animatediff.py | |
import copy | |
import gc | |
from dataclasses import dataclass | |
from typing import Callable, Optional, Dict, Any, Tuple | |
from typing import List, Union | |
import PIL.Image | |
import numpy as np | |
import torch | |
from diffusers import AnimateDiffPipeline | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.models import AutoencoderKL | |
from diffusers.models.attention import FreeNoiseTransformerBlock | |
from diffusers.pipelines.animatediff.pipeline_animatediff import EXAMPLE_DOC_STRING | |
from diffusers.pipelines.free_noise_utils import AnimateDiffFreeNoiseMixin, SplitInferenceModule | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.schedulers import ( | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
) | |
from diffusers.utils import BaseOutput | |
from diffusers.utils import deprecate, logging, replace_example_docstring | |
from einops import rearrange | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from onlyflow.models.flow_adaptor import FlowEncoder | |
from onlyflow.models.unet import UNetMotionModel, AnimateDiffTransformer3D, \ | |
CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion, CrossAttnUpBlockMotion | |
from ..models.attention import BasicTransformerBlock | |
logger = logging.get_logger(__name__) | |
class FlowCtrlPipelineOutput(BaseOutput): | |
r""" | |
Output class for AnimateDiff pipelines. | |
Args: | |
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): | |
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing | |
denoised | |
PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape | |
`(batch_size, num_frames, channels, height, width)` | |
""" | |
frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]] | |
class FlowCtrlPipeline(AnimateDiffPipeline): | |
model_cpu_offload_seq = "text_encoder->flow_encoder->image_encoder->unet->vae" | |
_optional_components = ["feature_extractor", "image_encoder", "motion_adapter"] | |
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
def __init__(self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNetMotionModel, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler], | |
flow_encoder: FlowEncoder, | |
feature_extractor=None, | |
image_encoder=None, | |
motion_adapter=None, | |
): | |
super().__init__( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
motion_adapter=motion_adapter, | |
scheduler=scheduler, | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
) | |
self.register_modules( | |
flow_encoder=flow_encoder | |
) | |
def _enable_split_inference_motion_modules_( | |
self, motion_modules: List[AnimateDiffTransformer3D], spatial_split_size: int | |
) -> None: | |
for motion_module in motion_modules: | |
motion_module.proj_in = SplitInferenceModule(motion_module.proj_in, spatial_split_size, 0, ["input"]) | |
for i in range(len(motion_module.transformer_blocks)): | |
motion_module.transformer_blocks[i] = SplitInferenceModule( | |
motion_module.transformer_blocks[i], | |
spatial_split_size, | |
0, | |
["hidden_states", "encoder_hidden_states", "cross_attention_kwargs"], | |
) | |
motion_module.proj_out = SplitInferenceModule(motion_module.proj_out, spatial_split_size, 0, ["input"]) | |
def _enable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion, CrossAttnUpBlockMotion]): | |
r"""Helper function to enable FreeNoise in transformer blocks.""" | |
for motion_module in block.motion_modules: | |
num_transformer_blocks = len(motion_module.transformer_blocks) | |
for i in range(num_transformer_blocks): | |
if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock): | |
motion_module.transformer_blocks[i].set_free_noise_properties( | |
self._free_noise_context_length, | |
self._free_noise_context_stride, | |
self._free_noise_weighting_scheme, | |
) | |
else: | |
basic_transfomer_block = motion_module.transformer_blocks[i] | |
motion_module.transformer_blocks[i] = FreeNoiseTransformerBlock( | |
dim=basic_transfomer_block.dim, | |
num_attention_heads=basic_transfomer_block.num_attention_heads, | |
attention_head_dim=basic_transfomer_block.attention_head_dim, | |
dropout=basic_transfomer_block.dropout, | |
cross_attention_dim=basic_transfomer_block.cross_attention_dim, | |
activation_fn=basic_transfomer_block.activation_fn, | |
attention_bias=basic_transfomer_block.attention_bias, | |
only_cross_attention=basic_transfomer_block.only_cross_attention, | |
double_self_attention=basic_transfomer_block.double_self_attention, | |
positional_embeddings=basic_transfomer_block.positional_embeddings, | |
num_positional_embeddings=basic_transfomer_block.num_positional_embeddings, | |
context_length=self._free_noise_context_length, | |
context_stride=self._free_noise_context_stride, | |
weighting_scheme=self._free_noise_weighting_scheme, | |
).to(device=self._execution_device, dtype=self.dtype) | |
# here i need to copy the attention processor from the basic transformer block to the free noise transformer block | |
motion_module.transformer_blocks[i].attn1 = basic_transfomer_block.attn1 | |
motion_module.transformer_blocks[i].attn2 = basic_transfomer_block.attn2 | |
motion_module.transformer_blocks[i].load_state_dict( | |
basic_transfomer_block.state_dict(), strict=True | |
) | |
motion_module.transformer_blocks[i].set_chunk_feed_forward( | |
basic_transfomer_block._chunk_size, basic_transfomer_block._chunk_dim | |
) | |
def _disable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion, CrossAttnUpBlockMotion]): | |
r"""Helper function to disable FreeNoise in transformer blocks.""" | |
for motion_module in block.motion_modules: | |
num_transformer_blocks = len(motion_module.transformer_blocks) | |
for i in range(num_transformer_blocks): | |
if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock): | |
free_noise_transfomer_block = motion_module.transformer_blocks[i] | |
motion_module.transformer_blocks[i] = BasicTransformerBlock( | |
dim=free_noise_transfomer_block.dim, | |
num_attention_heads=free_noise_transfomer_block.num_attention_heads, | |
attention_head_dim=free_noise_transfomer_block.attention_head_dim, | |
dropout=free_noise_transfomer_block.dropout, | |
cross_attention_dim=free_noise_transfomer_block.cross_attention_dim, | |
activation_fn=free_noise_transfomer_block.activation_fn, | |
attention_bias=free_noise_transfomer_block.attention_bias, | |
only_cross_attention=free_noise_transfomer_block.only_cross_attention, | |
double_self_attention=free_noise_transfomer_block.double_self_attention, | |
positional_embeddings=free_noise_transfomer_block.positional_embeddings, | |
num_positional_embeddings=free_noise_transfomer_block.num_positional_embeddings, | |
).to(device=self._execution_device, dtype=self.dtype) | |
motion_module.transformer_blocks[i].load_state_dict( | |
free_noise_transfomer_block.state_dict(), strict=True | |
) | |
motion_module.transformer_blocks[i].set_chunk_feed_forward( | |
free_noise_transfomer_block._chunk_size, free_noise_transfomer_block._chunk_dim | |
) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
optical_flow: torch.FloatTensor = None, | |
num_frames: Optional[int] = 16, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
output_type: Optional[str] = "pt", | |
return_dict: bool = True, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
motion_cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
clip_skip: Optional[int] = None, | |
decode_chunk_size: int = 16, | |
val_scale_factor_spatial: float = 0., | |
val_scale_factor_temporal: float = 0., | |
**kwargs, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated video. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated video. | |
num_frames (`int`, *optional*, defaults to 16): | |
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds | |
amounts to 2 seconds of video. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape | |
`(batch_size, num_channel, num_frames, height, width)`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
ip_adapter_image: (`PipelineImageInput`, *optional*): | |
Optional image input to work with IP Adapters. | |
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should | |
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not | |
provided, embeddings are computed from the `ip_adapter_image` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead | |
of a plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
decode_chunk_size (`int`, defaults to `16`): | |
The number of frames to decode at a time when calling `decode_latents` method. | |
Examples: | |
Returns: | |
[`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is | |
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
num_videos_per_prompt = 1 | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, (str, dict)): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
if self.free_noise_enabled: | |
prompt_embeds, negative_prompt_embeds = self._encode_prompt_free_noise( | |
prompt=prompt, | |
num_frames=num_frames, | |
device=device, | |
num_videos_per_prompt=num_videos_per_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
else: | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_videos_per_prompt, | |
self.do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0) | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_videos_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
num_frames, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_peak_memory_stats() | |
torch.cuda.synchronize() | |
assert optical_flow.ndim == 5 | |
bs = optical_flow.shape[0] | |
if self.free_noise_enabled: | |
length = optical_flow.shape[2] | |
flow_embedding_features = [ | |
torch.zeros((bs, length, *test_size.shape[1:]), device=self._execution_device) | |
for test_size in self.flow_encoder(optical_flow[:,:,:16].to(self._execution_device)) | |
] | |
weight_factor = torch.zeros(length, device=self._execution_device) | |
for star_idx in range(0, length, self._free_noise_context_stride): | |
weight_factor[star_idx:star_idx + self._free_noise_context_length] += 1.0 | |
infe = self.flow_encoder(optical_flow[:,:,star_idx:star_idx + self._free_noise_context_length].to(self._execution_device)) | |
for flow_emb, infe_sub in zip(flow_embedding_features, infe): | |
flow_emb[:,star_idx:star_idx + self._free_noise_context_length] += rearrange(infe_sub, '(b f) c h w -> b f c h w', b=bs).to(self._execution_device) | |
flow_embedding_features = [flow_emb / weight_factor[None,:,None,None,None] for flow_emb in flow_embedding_features] | |
flow_embedding_features = [rearrange(x, 'b f c h w -> b c f h w') for x in flow_embedding_features] | |
else: | |
flow_embedding_features = self.flow_encoder(optical_flow.to(self._execution_device)) # input b c f h w into bf, c, h, w | |
flow_embedding_features = [rearrange(x, '(b f) c h w -> b c f h w', b=bs).to(self._execution_device) | |
for x in flow_embedding_features] | |
del optical_flow | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_peak_memory_stats() | |
torch.cuda.synchronize() | |
# 7. Add image embeds for IP-Adapter | |
added_cond_kwargs = ( | |
{"image_embeds": image_embeds} | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None | |
else None | |
) | |
num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 | |
for free_init_iter in range(num_free_init_iters): | |
if self.free_init_enabled: | |
latents, timesteps = self._apply_free_init( | |
latents, free_init_iter, num_inference_steps, device, latents.dtype, generator | |
) | |
self._num_timesteps = len(timesteps) | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
if isinstance(flow_embedding_features[0], list): | |
flow_embedding_features = [[torch.cat([x, x], dim=0) for x in flow_embedding_feature] | |
for flow_embedding_feature in flow_embedding_features] \ | |
if self.do_classifier_free_guidance else flow_embedding_features | |
else: | |
flow_embedding_features = [torch.cat([x, x], dim=0) for x in flow_embedding_features] \ | |
if self.do_classifier_free_guidance else flow_embedding_features # [2b c f h w] | |
# 8. Denoising loop | |
with self.progress_bar(total=self._num_timesteps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
if added_cond_kwargs is not None: | |
added_cond_kwargs.update({"flow_embedding_features": flow_embedding_features}) | |
else: | |
added_cond_kwargs = {"flow_embedding_features": flow_embedding_features} | |
if cross_attention_kwargs is not None: | |
cross_attention_kwargs.update({"flow_scale": val_scale_factor_spatial}) | |
else: | |
cross_attention_kwargs = {"flow_scale": val_scale_factor_spatial} | |
if motion_cross_attention_kwargs is not None: | |
motion_cross_attention_kwargs.update({"flow_scale": val_scale_factor_temporal}) | |
else: | |
motion_cross_attention_kwargs = {"flow_scale": val_scale_factor_temporal} | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
motion_cross_attention_kwargs=motion_cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
).sample | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# 9. Post processing | |
if output_type == "latent": | |
video = latents | |
else: | |
video_tensor = self.decode_latents(latents, decode_chunk_size) | |
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) | |
# 10. Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return FlowCtrlPipelineOutput(frames=video) | |