Spaces:
Runtime error
Runtime error
secilozksen
commited on
Commit
•
38a4d89
1
Parent(s):
a3f655e
Upload 8 files
Browse files- .gitattributes +1 -0
- README.md +17 -12
- context-embeddings.pkl +3 -0
- demov2.py +304 -0
- policyQA.json +0 -0
- policyQA_bsbs.csv +0 -0
- policyQA_bsbs_sentence.csv +0 -0
- policyQA_original.csv +3 -0
- requirements.txt +150 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
policyQA_original.csv filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,12 +1,17 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# QuestionAnsweringDemo
|
2 |
+
|
3 |
+
## Create the environment
|
4 |
+
|
5 |
+
conda env create --file environment.yml
|
6 |
+
|
7 |
+
conda activate QADemo
|
8 |
+
|
9 |
+
After installing requirements, please make sure that you add huggingface authorization token to your ./.streamlit/secret.toml file.
|
10 |
+
|
11 |
+
It should be something like:
|
12 |
+
|
13 |
+
AUTH_TOKEN='your_auth_token_here'
|
14 |
+
|
15 |
+
## Runing the app:
|
16 |
+
|
17 |
+
streamlit run demov2.py
|
context-embeddings.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9051e569255d71a5dbece9ebe371c81c0ef1a2ab9af91dc23d27eddb61943310
|
3 |
+
size 6562679
|
demov2.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import streamlit as st
|
3 |
+
import json
|
4 |
+
import pandas as pd
|
5 |
+
import tokenizers
|
6 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
7 |
+
from transformers import pipeline
|
8 |
+
from st_aggrid import GridOptionsBuilder, AgGrid
|
9 |
+
import pickle
|
10 |
+
import torch
|
11 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
12 |
+
import spacy
|
13 |
+
import regex
|
14 |
+
from typing import List
|
15 |
+
from torch.autograd import Variable
|
16 |
+
|
17 |
+
st.set_page_config(layout="wide")
|
18 |
+
|
19 |
+
DATAFRAME_FILE_ORIGINAL = 'policyQA_original.csv'
|
20 |
+
DATAFRAME_FILE_BSBS = 'policyQA_bsbs_sentence.csv'
|
21 |
+
|
22 |
+
|
23 |
+
@st.experimental_singleton(suppress_st_warning=True, show_spinner=False)
|
24 |
+
def cross_encoder_init():
|
25 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
26 |
+
return cross_encoder
|
27 |
+
|
28 |
+
|
29 |
+
@st.experimental_singleton(suppress_st_warning=True, show_spinner=False)
|
30 |
+
def bi_encoder_init():
|
31 |
+
bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
|
32 |
+
bi_encoder.max_seq_length = 500 # Truncate long passages to 256 tokens
|
33 |
+
return bi_encoder
|
34 |
+
|
35 |
+
|
36 |
+
@st.experimental_singleton(suppress_st_warning=True, show_spinner=False)
|
37 |
+
def nlp_init(auth_token, private_model_name):
|
38 |
+
return pipeline('question-answering', model=private_model_name, tokenizer=private_model_name,
|
39 |
+
use_auth_token=auth_token,
|
40 |
+
revision="main")
|
41 |
+
|
42 |
+
|
43 |
+
@st.experimental_singleton(suppress_st_warning=True, show_spinner=False)
|
44 |
+
def nlp_pipeline_hf():
|
45 |
+
model_name = "deepset/roberta-base-squad2"
|
46 |
+
return pipeline('question-answering', model=model_name, tokenizer=model_name)
|
47 |
+
|
48 |
+
|
49 |
+
@st.experimental_singleton(suppress_st_warning=True, show_spinner=False)
|
50 |
+
def nlp_pipeline_sentence_based(auth_token, private_model_name):
|
51 |
+
tokenizer = RobertaTokenizer.from_pretrained(private_model_name, use_auth_token=auth_token)
|
52 |
+
model = RobertaForSequenceClassification.from_pretrained(private_model_name, use_auth_token=auth_token)
|
53 |
+
return tokenizer, model
|
54 |
+
|
55 |
+
|
56 |
+
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None,
|
57 |
+
regex.Pattern: lambda _: None}, show_spinner=False)
|
58 |
+
def load_models_sentence_based(auth_token, private_model_name, private_model_name_base):
|
59 |
+
bi_encoder = bi_encoder_init()
|
60 |
+
cross_encoder = cross_encoder_init()
|
61 |
+
# OLD MODEL
|
62 |
+
# nlp = nlp_init(auth_token, private_model_name)
|
63 |
+
# nlp_hf = nlp_pipeline_hf()
|
64 |
+
policy_qa_tokenizer, policy_qa_model = nlp_pipeline_sentence_based(auth_token, private_model_name)
|
65 |
+
asnq_tokenizer, asnq_model = nlp_pipeline_sentence_based(auth_token, private_model_name_base)
|
66 |
+
|
67 |
+
return bi_encoder, cross_encoder, policy_qa_tokenizer, policy_qa_model, asnq_tokenizer, asnq_model
|
68 |
+
|
69 |
+
|
70 |
+
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None}, show_spinner=False)
|
71 |
+
def load_models(auth_token, private_model_name):
|
72 |
+
bi_encoder = bi_encoder_init()
|
73 |
+
cross_encoder = cross_encoder_init()
|
74 |
+
nlp = nlp_init(auth_token, private_model_name)
|
75 |
+
nlp_hf = nlp_pipeline_hf()
|
76 |
+
|
77 |
+
return bi_encoder, cross_encoder, nlp, nlp_hf
|
78 |
+
|
79 |
+
|
80 |
+
def context():
|
81 |
+
bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1', device='cpu')
|
82 |
+
with open("/home/secilsen/PycharmProjects/SquadOperations/contexes.json", 'r', encoding='utf-8') as f:
|
83 |
+
paragraphs = json.load(f)
|
84 |
+
paragraphs = paragraphs['contexes']
|
85 |
+
with open('context-embeddings.pkl', "wb") as fIn:
|
86 |
+
context_embeddings = bi_encoder.encode(paragraphs, convert_to_tensor=True, show_progress_bar=True)
|
87 |
+
pickle.dump({'contexes': paragraphs, 'embeddings': context_embeddings}, fIn)
|
88 |
+
|
89 |
+
|
90 |
+
@st.cache(show_spinner=False)
|
91 |
+
def load_paragraphs():
|
92 |
+
with open('context-embeddings.pkl', "rb") as fIn:
|
93 |
+
cache_data = pickle.load(fIn)
|
94 |
+
corpus_sentences = cache_data['contexes']
|
95 |
+
corpus_embeddings = cache_data['embeddings']
|
96 |
+
|
97 |
+
return corpus_embeddings, corpus_sentences
|
98 |
+
|
99 |
+
|
100 |
+
@st.cache(show_spinner=False)
|
101 |
+
def load_dataframes():
|
102 |
+
data_original = pd.read_csv(DATAFRAME_FILE_ORIGINAL, index_col=0, sep='|')
|
103 |
+
data_bsbs = pd.read_csv(DATAFRAME_FILE_BSBS, index_col=0, sep='|')
|
104 |
+
data_original = data_original.sample(frac=1).reset_index(drop=True)
|
105 |
+
data_bsbs = data_bsbs.sample(frac=1).reset_index(drop=True)
|
106 |
+
return data_original, data_bsbs
|
107 |
+
|
108 |
+
|
109 |
+
def search(question, corpus_embeddings, contexes, bi_encoder, cross_encoder):
|
110 |
+
# Semantic Search (Retrieve)
|
111 |
+
question_embedding = bi_encoder.encode(question, convert_to_tensor=True)
|
112 |
+
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=100)
|
113 |
+
if len(hits) == 0:
|
114 |
+
return []
|
115 |
+
hits = hits[0]
|
116 |
+
# Rerank - score all retrieved passages with cross-encoder
|
117 |
+
cross_inp = [[question, contexes[hit['corpus_id']]] for hit in hits]
|
118 |
+
cross_scores = cross_encoder.predict(cross_inp)
|
119 |
+
|
120 |
+
# Sort results by the cross-encoder scores
|
121 |
+
for idx in range(len(cross_scores)):
|
122 |
+
hits[idx]['cross-score'] = cross_scores[idx]
|
123 |
+
|
124 |
+
# Output of top-5 hits from re-ranker
|
125 |
+
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
|
126 |
+
top_5_contexes = []
|
127 |
+
top_5_scores = []
|
128 |
+
for hit in hits[0:20]:
|
129 |
+
top_5_contexes.append(contexes[hit['corpus_id']])
|
130 |
+
top_5_scores.append(hit['cross-score'])
|
131 |
+
return top_5_contexes, top_5_scores
|
132 |
+
|
133 |
+
|
134 |
+
def paragraph_embeddings():
|
135 |
+
paragraphs = load_paragraphs()
|
136 |
+
context_embeddings = bi_encoder.encode(paragraphs, convert_to_tensor=True, show_progress_bar=True)
|
137 |
+
return context_embeddings, paragraphs
|
138 |
+
|
139 |
+
|
140 |
+
def retrieve_rerank_pipeline(question, context_embeddings, paragraphs, bi_encoder, cross_encoder):
|
141 |
+
top_5_contexes, top_5_scores = search(question, context_embeddings, paragraphs, bi_encoder, cross_encoder)
|
142 |
+
return top_5_contexes, top_5_scores
|
143 |
+
|
144 |
+
|
145 |
+
def qa_pipeline(question, context, nlp):
|
146 |
+
return nlp({'question': question.strip(), 'context': context})
|
147 |
+
|
148 |
+
|
149 |
+
def qa_pipeline_sentence(question, context, model, tokenizer):
|
150 |
+
sentences_doc = spacy_nlp(context)
|
151 |
+
candidate_sentences = []
|
152 |
+
for sentence in sentences_doc.sents:
|
153 |
+
tokenized = tokenizer(f"<s> {question} </s> {sentence.text} </s>", padding=True, truncation=True, return_tensors='pt')
|
154 |
+
output = model(**tokenized)
|
155 |
+
soft_outputs = torch.nn.functional.sigmoid(output[0])
|
156 |
+
t = Variable(torch.Tensor([0.2])) # threshold
|
157 |
+
out = (soft_outputs[0] > t) * 1
|
158 |
+
out = out.flatten().cpu().detach().numpy()
|
159 |
+
# res = torch.argmax(out, dim=-1)
|
160 |
+
print(out[1])
|
161 |
+
if out[1] == 1:
|
162 |
+
prob = soft_outputs[:, 1].flatten().cpu().detach().numpy()
|
163 |
+
candidate_sentences.append(dict(sentence=sentence,
|
164 |
+
prob=prob[0]))
|
165 |
+
print(candidate_sentences)
|
166 |
+
candidate_sentences = sorted(candidate_sentences, key=lambda x: x['prob'], reverse=True)
|
167 |
+
return candidate_sentences
|
168 |
+
|
169 |
+
|
170 |
+
def candidate_sentence_controller(sentences):
|
171 |
+
if sentences is None or len(sentences) == 0:
|
172 |
+
return ""
|
173 |
+
if len(sentences) == 1:
|
174 |
+
return sentences[0]
|
175 |
+
return sentences
|
176 |
+
|
177 |
+
|
178 |
+
def interactive_table(dataframe):
|
179 |
+
gb = GridOptionsBuilder.from_dataframe(dataframe)
|
180 |
+
gb.configure_pagination(paginationAutoPageSize=True)
|
181 |
+
gb.configure_side_bar()
|
182 |
+
gb.configure_selection('single', rowMultiSelectWithClick=True,
|
183 |
+
groupSelectsChildren="Group checkbox select children") # Enable multi-row selection
|
184 |
+
gridOptions = gb.build()
|
185 |
+
grid_response = AgGrid(
|
186 |
+
dataframe,
|
187 |
+
gridOptions=gridOptions,
|
188 |
+
data_return_mode='AS_INPUT',
|
189 |
+
update_mode='SELECTION_CHANGED',
|
190 |
+
enable_enterprise_modules=False,
|
191 |
+
fit_columns_on_grid_load=False,
|
192 |
+
theme='streamlit', # Add theme color to the table
|
193 |
+
height=350,
|
194 |
+
width='100%',
|
195 |
+
reload_data=False
|
196 |
+
)
|
197 |
+
return grid_response
|
198 |
+
|
199 |
+
|
200 |
+
def qa_main_widgetsv2():
|
201 |
+
st.title("Question Answering Demo")
|
202 |
+
col1, col2, col3 = st.columns([2, 1, 1])
|
203 |
+
with col1:
|
204 |
+
form = st.form(key='first_form')
|
205 |
+
question = form.text_area("What is your question?:", height=200)
|
206 |
+
submit = form.form_submit_button('Submit')
|
207 |
+
if "form_submit" not in st.session_state:
|
208 |
+
st.session_state.form_submit = False
|
209 |
+
if submit:
|
210 |
+
st.session_state.form_submit = True
|
211 |
+
if st.session_state.form_submit and question != '':
|
212 |
+
with st.spinner(text='Related context search in progress..'):
|
213 |
+
top_5_contexes, top_5_scores = retrieve_rerank_pipeline(question.strip(), context_embeddings,
|
214 |
+
paragraphs, bi_encoder,
|
215 |
+
cross_encoder)
|
216 |
+
if len(top_5_contexes) == 0:
|
217 |
+
st.error("Related context not found!")
|
218 |
+
st.session_state.form_submit = False
|
219 |
+
else:
|
220 |
+
with st.spinner(text='Now answering your question..'):
|
221 |
+
for i, context in enumerate(top_5_contexes):
|
222 |
+
# answer_trained = qa_pipeline(question, context, nlp)
|
223 |
+
# answer_base = qa_pipeline(question, context, nlp_hf)
|
224 |
+
answer_trained = qa_pipeline_sentence(question, context, policy_qa_model, policy_qa_tokenizer)
|
225 |
+
answer_base = qa_pipeline_sentence(question, context, asnq_model, asnq_tokenizer)
|
226 |
+
st.markdown(f"## Related Context - {i + 1} (score: {top_5_scores[i]:.2f})")
|
227 |
+
st.markdown(context)
|
228 |
+
st.markdown("## Answer (trained):")
|
229 |
+
if answer_trained is None:
|
230 |
+
st.markdown("")
|
231 |
+
elif isinstance(answer_trained, List):
|
232 |
+
for i,answer in enumerate(answer_trained):
|
233 |
+
st.markdown(f"### Answer Option {i+1} with prob. {answer['prob']:.4f}")
|
234 |
+
st.markdown(answer['sentence'])
|
235 |
+
else:
|
236 |
+
st.markdown(answer_trained)
|
237 |
+
# st.markdown(answer_trained['answer'])
|
238 |
+
st.markdown("## Answer (roberta-base-asnq):")
|
239 |
+
if answer_base is None:
|
240 |
+
st.markdown("")
|
241 |
+
elif isinstance(answer_base, List):
|
242 |
+
for i,answer in enumerate(answer_base):
|
243 |
+
st.markdown(f"### Answer Option {i + 1} with prob. {answer['prob']:.4f}")
|
244 |
+
st.markdown(answer['sentence'])
|
245 |
+
else:
|
246 |
+
st.markdown(answer_base)
|
247 |
+
st.markdown("""---""")
|
248 |
+
|
249 |
+
with col2:
|
250 |
+
st.markdown("## Original Questions")
|
251 |
+
grid_response = interactive_table(dataframe_original)
|
252 |
+
data1 = grid_response['selected_rows']
|
253 |
+
if "grid_click_1" not in st.session_state:
|
254 |
+
st.session_state.grid_click_1 = False
|
255 |
+
if len(data1) > 0:
|
256 |
+
st.session_state.grid_click_1 = True
|
257 |
+
if st.session_state.grid_click_1:
|
258 |
+
selection = data1[0]
|
259 |
+
# st.markdown("## Context & Answer:")
|
260 |
+
st.markdown("### Context:")
|
261 |
+
st.write(selection['context'])
|
262 |
+
st.markdown("### Question:")
|
263 |
+
st.write(selection['question'])
|
264 |
+
st.markdown("### Answer:")
|
265 |
+
st.write(selection['answer'])
|
266 |
+
st.session_state.grid_click_1 = False
|
267 |
+
with col3:
|
268 |
+
st.markdown("## Our Questions")
|
269 |
+
grid_response = interactive_table(dataframe_bsbs)
|
270 |
+
data2 = grid_response['selected_rows']
|
271 |
+
if "grid_click_2" not in st.session_state:
|
272 |
+
st.session_state.grid_click_2 = False
|
273 |
+
if len(data2) > 0:
|
274 |
+
st.session_state.grid_click_2 = True
|
275 |
+
if st.session_state.grid_click_2:
|
276 |
+
selection = data2[0]
|
277 |
+
# st.markdown("## Context & Answer:")
|
278 |
+
st.markdown("### Context:")
|
279 |
+
st.write(selection['context'])
|
280 |
+
st.markdown("### Question:")
|
281 |
+
st.write(selection['question'])
|
282 |
+
st.markdown("### Answer:")
|
283 |
+
st.write(selection['answer'])
|
284 |
+
st.session_state.grid_click_2 = False
|
285 |
+
|
286 |
+
|
287 |
+
def load():
|
288 |
+
context_embeddings, paragraphs = load_paragraphs()
|
289 |
+
dataframe_original, dataframe_bsbs = load_dataframes()
|
290 |
+
spacy_nlp = spacy.load('en_core_web_sm')
|
291 |
+
# bi_encoder, cross_encoder, nlp, nlp_hf = copy.deepcopy(load(st.secrets["AUTH_TOKEN"], st.secrets["MODEL_NAME"]))
|
292 |
+
bi_encoder, cross_encoder, policy_qa_tokenizer, policy_qa_model, asnq_tokenizer, asnq_model \
|
293 |
+
= copy.deepcopy(
|
294 |
+
load_models_sentence_based(st.secrets["AUTH_TOKEN"], st.secrets["MODEL_NAME"], st.secrets["MODEL_NAME_BASE"]))
|
295 |
+
return context_embeddings, paragraphs, dataframe_original, dataframe_bsbs, bi_encoder, cross_encoder, policy_qa_tokenizer, policy_qa_model, asnq_tokenizer, asnq_model, spacy_nlp
|
296 |
+
|
297 |
+
|
298 |
+
# save_dataframe()
|
299 |
+
# context_embeddings, paragraphs, dataframe_original, dataframe_bsbs, bi_encoder, cross_encoder, nlp, nlp_hf = load()
|
300 |
+
context_embeddings, paragraphs, dataframe_original, dataframe_bsbs, bi_encoder, cross_encoder, policy_qa_tokenizer, policy_qa_model, asnq_tokenizer, asnq_model, spacy_nlp = load()
|
301 |
+
qa_main_widgetsv2()
|
302 |
+
|
303 |
+
# if __name__ == '__main__':
|
304 |
+
# context()
|
policyQA.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
policyQA_bsbs.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
policyQA_bsbs_sentence.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
policyQA_original.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f7b4cb4bd7c65a11f21a0553c0a419c424639a6a123cdf89ecbb05ad849b7a6
|
3 |
+
size 28581894
|
requirements.txt
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
altair==4.2.0
|
2 |
+
argon2-cffi==21.3.0
|
3 |
+
argon2-cffi-bindings==21.2.0
|
4 |
+
asttokens==2.0.5
|
5 |
+
attrs==21.4.0
|
6 |
+
backcall==0.2.0
|
7 |
+
bleach==5.0.1
|
8 |
+
blinker==1.5
|
9 |
+
blis==0.7.9
|
10 |
+
brotlipy==0.7.0
|
11 |
+
cachetools==5.2.0
|
12 |
+
catalogue==2.0.8
|
13 |
+
certifi==2022.9.24
|
14 |
+
cffi==1.15.1
|
15 |
+
charset-normalizer==2.1.1
|
16 |
+
click==8.1.3
|
17 |
+
commonmark==0.9.1
|
18 |
+
cryptography==38.0.3
|
19 |
+
cycler==0.11.0
|
20 |
+
cymem==2.0.7
|
21 |
+
debugpy==1.6.0
|
22 |
+
decorator==5.1.1
|
23 |
+
defusedxml==0.7.1
|
24 |
+
en-core-web-sm==3.2.0
|
25 |
+
entrypoints==0.4
|
26 |
+
executing==0.8.3
|
27 |
+
fastjsonschema==2.15.3
|
28 |
+
filelock==3.8.0
|
29 |
+
fonttools==4.33.3
|
30 |
+
gitdb==4.0.9
|
31 |
+
GitPython==3.1.29
|
32 |
+
huggingface-hub==0.10.0
|
33 |
+
idna==3.4
|
34 |
+
importlib-metadata==5.0.0
|
35 |
+
ipykernel==6.15.0
|
36 |
+
ipython==8.4.0
|
37 |
+
ipython-genutils==0.2.0
|
38 |
+
ipywidgets==7.7.1
|
39 |
+
jedi==0.18.1
|
40 |
+
Jinja2==3.1.2
|
41 |
+
joblib==1.2.0
|
42 |
+
jsonschema==4.6.0
|
43 |
+
jupyter==1.0.0
|
44 |
+
jupyter-client==7.3.4
|
45 |
+
jupyter-console==6.4.4
|
46 |
+
jupyter-core==4.10.0
|
47 |
+
jupyterlab-pygments==0.2.2
|
48 |
+
jupyterlab-widgets==1.1.1
|
49 |
+
kiwisolver==1.4.3
|
50 |
+
langcodes==3.3.0
|
51 |
+
MarkupSafe==2.1.1
|
52 |
+
matplotlib==3.5.2
|
53 |
+
matplotlib-inline==0.1.3
|
54 |
+
mistune==0.8.4
|
55 |
+
mkl-fft==1.3.1
|
56 |
+
mkl-random==1.2.2
|
57 |
+
mkl-service==2.4.0
|
58 |
+
mpmath==1.2.1
|
59 |
+
murmurhash==1.0.9
|
60 |
+
nbclient==0.6.4
|
61 |
+
nbconvert==6.5.0
|
62 |
+
nbformat==5.4.0
|
63 |
+
nest-asyncio==1.5.5
|
64 |
+
nltk==3.7
|
65 |
+
nose==1.3.7
|
66 |
+
notebook==6.4.12
|
67 |
+
numpy==1.23.3
|
68 |
+
packaging==21.3
|
69 |
+
pandas==1.5.0
|
70 |
+
pandocfilters==1.5.0
|
71 |
+
parso==0.8.3
|
72 |
+
pathy==0.6.2
|
73 |
+
pexpect==4.8.0
|
74 |
+
pickleshare==0.7.5
|
75 |
+
Pillow==9.2.0
|
76 |
+
pip==22.2.2
|
77 |
+
preshed==3.0.8
|
78 |
+
prometheus-client==0.14.1
|
79 |
+
prompt-toolkit==3.0.30
|
80 |
+
protobuf==3.20.3
|
81 |
+
psutil==5.9.1
|
82 |
+
ptyprocess==0.7.0
|
83 |
+
pure-eval==0.2.2
|
84 |
+
pyarrow==10.0.0
|
85 |
+
pycparser==2.21
|
86 |
+
pydantic==1.8.2
|
87 |
+
pydeck==0.8.0b4
|
88 |
+
Pygments==2.12.0
|
89 |
+
Pympler==1.0.1
|
90 |
+
pyOpenSSL==22.1.0
|
91 |
+
pyparsing==3.0.9
|
92 |
+
pyrsistent==0.18.1
|
93 |
+
PySocks==1.7.1
|
94 |
+
python-dateutil==2.8.2
|
95 |
+
python-decouple==3.6
|
96 |
+
pytz==2022.6
|
97 |
+
pytz-deprecation-shim==0.1.0.post0
|
98 |
+
PyYAML==6.0
|
99 |
+
pyzmq==23.2.0
|
100 |
+
qtconsole==5.3.1
|
101 |
+
QtPy==2.1.0
|
102 |
+
regex==2022.10.31
|
103 |
+
requests==2.28.1
|
104 |
+
rich==12.6.0
|
105 |
+
scikit-learn==1.1.2
|
106 |
+
scipy==1.9.2
|
107 |
+
semver==2.13.0
|
108 |
+
Send2Trash==1.8.0
|
109 |
+
sentence-transformers==2.2.2
|
110 |
+
sentencepiece==0.1.97
|
111 |
+
setuptools==65.5.0
|
112 |
+
six==1.16.0
|
113 |
+
smart-open==5.2.1
|
114 |
+
smmap==5.0.0
|
115 |
+
soupsieve==2.3.2.post1
|
116 |
+
spacy==3.2.0
|
117 |
+
spacy-legacy==3.0.10
|
118 |
+
spacy-loggers==1.0.3
|
119 |
+
srsly==2.4.5
|
120 |
+
stack-data==0.3.0
|
121 |
+
streamlit==1.13.0
|
122 |
+
streamlit-aggrid==0.3.3
|
123 |
+
sympy==1.10.1
|
124 |
+
terminado==0.15.0
|
125 |
+
thinc==8.0.17
|
126 |
+
threadpoolctl==3.1.0
|
127 |
+
tinycss2==1.1.1
|
128 |
+
tokenizers==0.12.1
|
129 |
+
toml==0.10.2
|
130 |
+
toolz==0.12.0
|
131 |
+
torch==1.12.1
|
132 |
+
torchaudio==0.12.1
|
133 |
+
torchvision==0.13.1
|
134 |
+
tornado==6.1
|
135 |
+
tqdm==4.64.1
|
136 |
+
traitlets==5.3.0
|
137 |
+
transformers==4.22.2
|
138 |
+
typer==0.4.2
|
139 |
+
typing_extensions==4.4.0
|
140 |
+
tzdata==2022.6
|
141 |
+
tzlocal==4.2
|
142 |
+
urllib3==1.26.11
|
143 |
+
validators==0.20.0
|
144 |
+
wasabi==0.10.1
|
145 |
+
watchdog==2.1.9
|
146 |
+
wcwidth==0.2.5
|
147 |
+
webencodings==0.5.1
|
148 |
+
wheel==0.37.1
|
149 |
+
widgetsnbextension==3.6.1
|
150 |
+
zipp==3.10.0
|