secilozksen commited on
Commit
02ecb0f
·
1 Parent(s): 98b83d0

Upload 4 files

Browse files

demo with new dataset commit

basecamp-dpr-context-embeddings.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18843457511ccc9cd7e998dafac0339d60dcc9984a69fcf884f9e96d2fd11d15
3
+ size 68535357
basecamp.csv ADDED
The diff for this file is too large to render. See raw diff
 
demo_dpr.py CHANGED
@@ -16,7 +16,7 @@ import tokenizers
16
  st.set_page_config(layout="wide")
17
 
18
  DATAFRAME_FILE_ORIGINAL = 'policyQA_original.csv'
19
- DATAFRAME_FILE_BSBS = 'policyQA_bsbs_sentence.csv'
20
 
21
  selectbox_selections = {
22
  'Retrieve - Rerank (with fine-tuned cross-encoder)': 1,
@@ -68,22 +68,21 @@ def load_paragraphs(path):
68
 
69
  @st.cache(show_spinner=False)
70
  def load_dataframes():
71
- data_original = pd.read_csv(DATAFRAME_FILE_ORIGINAL, index_col=0, sep='|')
72
  data_bsbs = pd.read_csv(DATAFRAME_FILE_BSBS, index_col=0, sep='|')
73
- data_original = data_original.sample(frac=1).reset_index(drop=True)
 
74
  data_bsbs = data_bsbs.sample(frac=1).reset_index(drop=True)
75
- return data_original, data_bsbs
76
 
77
  def dot_product(question_output, context_output):
78
- mat1 = torch.unsqueeze(question_output, dim=1)
79
- mat2 = torch.unsqueeze(context_output, dim=2)
80
- result = torch.bmm(mat1, mat2)
81
- result = torch.squeeze(result, dim=1)
82
- result = torch.squeeze(result, dim=1)
83
  return result
84
 
85
  def retrieve_rerank_DPR(question):
86
- hits = retrieve_with_dpr_embeddings(question)
87
  return rerank_with_DPR(hits, question)
88
 
89
  def DPR_reranking(question, selected_contexes, selected_embeddings):
@@ -124,7 +123,7 @@ def custom_dpr_pipeline(question):
124
  results_list = []
125
  for i,context_embedding in enumerate(dpr_context_embeddings):
126
  score = dot_product(question_embedding, context_embedding)
127
- results_list.append(score.detach().cpu().numpy()[0])
128
 
129
  hits = sorted(range(len(results_list)), key=lambda i: results_list[i], reverse=True)
130
  top_5_contexes = []
@@ -134,10 +133,10 @@ def custom_dpr_pipeline(question):
134
  top_5_scores.append(results_list[j])
135
  return top_5_contexes, top_5_scores
136
 
137
- def retrieve(question, corpus_embeddings):
138
  # Semantic Search (Retrieve)
139
  question_embedding = bi_encoder.encode(question, convert_to_tensor=True)
140
- hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=100)
141
  if len(hits) == 0:
142
  return []
143
  hits = hits[0]
@@ -156,41 +155,22 @@ def retrieve_with_dpr_embeddings(question):
156
  if len(hits) == 0:
157
  return []
158
  hits = hits[0]
159
- return hits
160
 
161
- def rerank_with_DPR(hits, question):
162
  # Rerank - score all retrieved passages with cross-encoder
163
  selected_contexes = [dpr_contexes[hit['corpus_id']] for hit in hits]
164
  selected_embeddings = [dpr_context_embeddings[hit['corpus_id']] for hit in hits]
165
- top_5_scores, top_5_contexes = DPR_reranking(question, selected_contexes, selected_embeddings)
166
  return top_5_contexes, top_5_scores
167
 
168
- def DPR_reranking(question, selected_contexes, selected_embeddings):
169
- scores = []
170
- tokenized_question = question_tokenizer(question, padding=True, truncation=True, return_tensors="pt",
171
- add_special_tokens=True)
172
- question_output = dpr_trained.model.question_model(**tokenized_question)
173
- question_output = question_output['pooler_output']
174
- for context_embedding in selected_embeddings:
175
- score = dot_product(question_output, context_embedding)
176
- scores.append(score.detach().cpu().numpy()[0])
177
-
178
- scores_index = sorted(range(len(scores)), key=lambda x: scores[x], reverse=True)
179
- contexes_list = []
180
- scores_final = []
181
- for i, idx in enumerate(scores_index[:5]):
182
- scores_final.append(scores[idx])
183
- contexes_list.append(selected_contexes[idx])
184
- return scores_final, contexes_list
185
-
186
-
187
  def retrieve_rerank_with_trained_cross_encoder(question):
188
- hits = retrieve(question, context_embeddings)
189
  cross_inp = [(question, contexes[hit['corpus_id']]) for hit in hits]
190
  cross_scores = trained_cross_encoder.predict(cross_inp)
191
  # Sort results by the cross-encoder scores
192
  for idx in range(len(cross_scores)):
193
- hits[idx]['cross-score'] = cross_scores[idx][0]
194
 
195
  # Output of top-5 hits from re-ranker
196
  hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
@@ -229,7 +209,7 @@ def img_to_bytes(img_path):
229
  return encoded
230
 
231
  def qa_main_widgetsv2():
232
- st.title("Semantic Search Demo")
233
  st.markdown("""---""")
234
  option = st.selectbox("Select a search method:", list(selectbox_selections.keys()))
235
  header_html = "<center> <img src='data:image/png;base64,{}' class='img-fluid' width='60%', height='40%'> </center>".format(
@@ -289,9 +269,13 @@ def load_models(dpr_model_path, auth_token, cross_encoder_model_path):
289
  question_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained('facebook/dpr-question_encoder-single-nq-base')
290
  return dpr_trained, bi_encoder, cross_encoder, trained_cross_encoder, question_tokenizer
291
 
292
- context_embeddings, contexes = load_paragraphs('context-embeddings.pkl')
293
- dpr_context_embeddings, dpr_contexes = load_paragraphs('custom-dpr-context-embeddings.pkl')
294
- dataframe_original, dataframe_bsbs = load_dataframes()
295
  dpr_trained, bi_encoder, cross_encoder, trained_cross_encoder, question_tokenizer = copy.deepcopy(load_models(st.secrets["DPR_MODEL_PATH"], st.secrets["AUTH_TOKEN"], st.secrets["CROSS_ENCODER_MODEL_PATH"]))
296
 
297
  qa_main_widgetsv2()
 
 
 
 
 
16
  st.set_page_config(layout="wide")
17
 
18
  DATAFRAME_FILE_ORIGINAL = 'policyQA_original.csv'
19
+ DATAFRAME_FILE_BSBS = 'basecamp.csv'
20
 
21
  selectbox_selections = {
22
  'Retrieve - Rerank (with fine-tuned cross-encoder)': 1,
 
68
 
69
  @st.cache(show_spinner=False)
70
  def load_dataframes():
71
+ # data_original = pd.read_csv(DATAFRAME_FILE_ORIGINAL, index_col=0, sep='|')
72
  data_bsbs = pd.read_csv(DATAFRAME_FILE_BSBS, index_col=0, sep='|')
73
+ data_bsbs.drop('context_id', axis=1, inplace=True)
74
+ # data_original = data_original.sample(frac=1).reset_index(drop=True)
75
  data_bsbs = data_bsbs.sample(frac=1).reset_index(drop=True)
76
+ return data_bsbs
77
 
78
  def dot_product(question_output, context_output):
79
+ mat1 = torch.squeeze(question_output, 0)
80
+ mat2 = torch.squeeze(context_output, 0)
81
+ result = torch.dot(mat1, mat2)
 
 
82
  return result
83
 
84
  def retrieve_rerank_DPR(question):
85
+ hits = retrieve(question)
86
  return rerank_with_DPR(hits, question)
87
 
88
  def DPR_reranking(question, selected_contexes, selected_embeddings):
 
123
  results_list = []
124
  for i,context_embedding in enumerate(dpr_context_embeddings):
125
  score = dot_product(question_embedding, context_embedding)
126
+ results_list.append(score.detach().cpu())
127
 
128
  hits = sorted(range(len(results_list)), key=lambda i: results_list[i], reverse=True)
129
  top_5_contexes = []
 
133
  top_5_scores.append(results_list[j])
134
  return top_5_contexes, top_5_scores
135
 
136
+ def retrieve(question):
137
  # Semantic Search (Retrieve)
138
  question_embedding = bi_encoder.encode(question, convert_to_tensor=True)
139
+ hits = util.semantic_search(question_embedding, context_embeddings, top_k=100)
140
  if len(hits) == 0:
141
  return []
142
  hits = hits[0]
 
155
  if len(hits) == 0:
156
  return []
157
  hits = hits[0]
158
+ return hits, question_embedding
159
 
160
+ def rerank_with_DPR(hits, question_embedding):
161
  # Rerank - score all retrieved passages with cross-encoder
162
  selected_contexes = [dpr_contexes[hit['corpus_id']] for hit in hits]
163
  selected_embeddings = [dpr_context_embeddings[hit['corpus_id']] for hit in hits]
164
+ top_5_scores, top_5_contexes = DPR_reranking(question_embedding, selected_contexes, selected_embeddings)
165
  return top_5_contexes, top_5_scores
166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
  def retrieve_rerank_with_trained_cross_encoder(question):
168
+ hits = retrieve(question)
169
  cross_inp = [(question, contexes[hit['corpus_id']]) for hit in hits]
170
  cross_scores = trained_cross_encoder.predict(cross_inp)
171
  # Sort results by the cross-encoder scores
172
  for idx in range(len(cross_scores)):
173
+ hits[idx]['cross-score'] = cross_scores[idx][1]
174
 
175
  # Output of top-5 hits from re-ranker
176
  hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
 
209
  return encoded
210
 
211
  def qa_main_widgetsv2():
212
+ st.title("Question Answering Demo")
213
  st.markdown("""---""")
214
  option = st.selectbox("Select a search method:", list(selectbox_selections.keys()))
215
  header_html = "<center> <img src='data:image/png;base64,{}' class='img-fluid' width='60%', height='40%'> </center>".format(
 
269
  question_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained('facebook/dpr-question_encoder-single-nq-base')
270
  return dpr_trained, bi_encoder, cross_encoder, trained_cross_encoder, question_tokenizer
271
 
272
+ context_embeddings, contexes = load_paragraphs('st-context-embeddings.pkl')
273
+ dpr_context_embeddings, dpr_contexes = load_paragraphs('basecamp-dpr-context-embeddings.pkl')
274
+ dataframe_bsbs = load_dataframes()
275
  dpr_trained, bi_encoder, cross_encoder, trained_cross_encoder, question_tokenizer = copy.deepcopy(load_models(st.secrets["DPR_MODEL_PATH"], st.secrets["AUTH_TOKEN"], st.secrets["CROSS_ENCODER_MODEL_PATH"]))
276
 
277
  qa_main_widgetsv2()
278
+
279
+ #if __name__ == '__main__':
280
+ # search_pipeline('Life insurance is paid by insurance companies that pay for what?', 1)
281
+
st-context-embeddings.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd65fe793062375df1efd50218e9a7c35253fe06a24e5527de7855671a4f958c
3
+ size 468299