obsei-demo / utils.py
obsei's picture
Show Pandas df
2d55fb8
raw
history blame
7.93 kB
import base64
import logging
import pathlib
import re
import sys
import uuid
import streamlit as st
import yaml
from obsei.configuration import ObseiConfiguration
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
def img_to_bytes(img_path):
img_bytes = pathlib.Path(img_path).read_bytes()
encoded = base64.b64encode(img_bytes).decode()
return encoded
# Copied from https://github.com/jrieke/traingenerator/blob/main/app/utils.py
def download_button(
object_to_download, download_filename, button_text # , pickle_it=False
):
try:
# some strings <-> bytes conversions necessary here
b64 = base64.b64encode(object_to_download.encode()).decode()
except AttributeError as e:
b64 = base64.b64encode(object_to_download).decode()
button_uuid = str(uuid.uuid4()).replace("-", "")
button_id = re.sub("\d+", "", button_uuid)
custom_css = f"""
<style>
#{button_id} {{
display: inline-flex;
align-items: center;
justify-content: center;
background-color: rgb(255, 255, 255);
color: rgb(38, 39, 48);
padding: .25rem .75rem;
position: relative;
text-decoration: none;
border-radius: 4px;
border-width: 1px;
border-style: solid;
border-color: rgb(230, 234, 241);
border-image: initial;
}}
#{button_id}:hover {{
border-color: rgb(246, 51, 102);
color: rgb(246, 51, 102);
}}
#{button_id}:active {{
box-shadow: none;
background-color: rgb(246, 51, 102);
color: white;
}}
</style> """
dl_link = (
custom_css
+ f'<a download="{download_filename}" id="{button_id}" href="data:file/txt;base64,{b64}">{button_text}</a><br><br>'
)
# dl_link = f'<a download="{download_filename}" id="{button_id}" href="data:file/txt;base64,{b64}"><input type="button" kind="primary" value="{button_text}"></a><br></br>'
st.markdown(dl_link, unsafe_allow_html=True)
def get_obsei_config(current_path, file_name):
return ObseiConfiguration(
config_path=current_path,
config_filename=file_name,
).configuration
@st.cache
def get_icon_name(name, icon, icon_size=40, font_size=1):
if not name:
return f'<img style="vertical-align:middle;margin:5px 5px" src="{icon}" width="{icon_size}" height="{icon_size}">'
return (
f'<p style="font-size:{font_size}px">'
f'<img style="vertical-align:middle;margin:1px 5px" src="{icon}" width="{icon_size}" height="{icon_size}">'
f"{name}</p>"
)
def render_config(config, component, help_str=None, parent_key=None):
if config is None:
return
prefix = "" if parent_key is None else f"{parent_key}."
if help_str is not None:
with component.expander("Info", False):
help_area = "\n".join(help_str)
st.code(f"{help_area}")
for k, v in config.items():
if k == "_target_":
continue
if isinstance(v, dict):
render_config(v, component, None, k)
elif isinstance(v, list):
if len(v) == 0:
continue
is_object = isinstance(v[0], dict)
if is_object:
for idx, sub_element in enumerate(v):
render_config(sub_element, component, None, f"{k}[{idx}]")
else:
text_data = component.text_area(
f"{prefix}{k}", ", ".join(v), help="Comma separated list"
)
text_list = text_data.split(",")
config[k] = [text.strip() for text in text_list]
elif isinstance(v, bool):
options = [True, False]
selected_option = component.radio(f"{prefix}{k}", options, options.index(v))
config[k] = bool(selected_option)
else:
tokens = k.split("_")
is_secret = tokens[-1] in ["key", "password", "token", "secret"]
hint = (
"Enter value"
if "lookup" not in tokens
else "Format: `<number><d|h|m>` d=day, h=hour & m=minute"
)
config[k] = component.text_input(
f"{prefix}{k}",
v,
type="password" if is_secret else "default",
help=hint,
)
def generate_python(generate_config):
return f"""
from obsei.configuration import ObseiConfiguration
# This is Obsei workflow path and filename
config_path = "./"
config_filename = "workflow.yml"
# Extract config via yaml file using `config_path` and `config_filename`
obsei_configuration = ObseiConfiguration(config_path=config_path, config_filename=config_filename)
# Initialize objects using configuration
source_config = obsei_configuration.initialize_instance("source_config")
source = obsei_configuration.initialize_instance("source")
analyzer = obsei_configuration.initialize_instance("analyzer")
analyzer_config = obsei_configuration.initialize_instance("analyzer_config")
sink_config = obsei_configuration.initialize_instance("sink_config")
sink = obsei_configuration.initialize_instance("sink")
# This will fetch information from configured source ie twitter, app store etc
source_response_list = source.lookup(source_config)
# This will execute analyzer (Sentiment, classification etc) on source data with provided analyzer_config
# Analyzer will it's output to `segmented_data` inside `analyzer_response`
analyzer_response_list = analyzer.analyze_input(
source_response_list=source_response_list,
analyzer_config=analyzer_config
)
# This will send analyzed output to configure sink ie Slack, Zendesk etc
sink_response_list = sink.send_data(analyzer_response_list, sink_config)
"""
def generate_yaml(generate_config):
return yaml.dump(generate_config)
def execute_workflow(generate_config, component=None, log_components=None):
progress_show = None
if component:
progress_show = component.empty()
progress_show.code("πŸ„πŸ„πŸ„ Processing 🐒🐒🐒")
try:
obsei_configuration = ObseiConfiguration(configuration=generate_config)
source_config = obsei_configuration.initialize_instance("source_config")
source = obsei_configuration.initialize_instance("source")
analyzer = obsei_configuration.initialize_instance("analyzer")
analyzer_config = obsei_configuration.initialize_instance("analyzer_config")
sink_config = obsei_configuration.initialize_instance("sink_config")
sink = obsei_configuration.initialize_instance("sink")
source_response_list = source.lookup(source_config)
log_components["source"].write([vars(response) for response in source_response_list])
analyzer_response_list = analyzer.analyze_input(
source_response_list=source_response_list, analyzer_config=analyzer_config
)
log_components["analyzer"].write([vars(response) for response in analyzer_response_list])
sink_response_list = sink.send_data(analyzer_response_list, sink_config)
if sink.TYPE == 'Pandas':
log_components["sink"].write(sink_response_list)
elif sink_response_list is not None:
log_components["sink"].write([vars(response) for response in sink_response_list])
else:
log_components["sink"].write("No Data")
if progress_show:
progress_show.code("πŸŽ‰πŸŽ‰πŸŽ‰ Processing Complete!! 🍾🍾🍾")
except Exception as ex:
if progress_show:
progress_show.code(f"❗❗❗ Processing Failed!! 😞😞😞 \n πŸ‘‰ ({str(ex)})")
raise ex