apailang commited on
Commit
85d5bae
β€’
1 Parent(s): eead8a4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -42,7 +42,7 @@ def predict(pilimg,Threshold):
42
  image_np = pil_image_as_numpy_array(pilimg)
43
 
44
  if Threshold is None or Threshold == 0:
45
- Threshold=0.88
46
  else:
47
  Threshold= float(Threshold)
48
 
@@ -52,8 +52,8 @@ def predict2(image_np,Threshold):
52
 
53
  results = detection_model(image_np)
54
 
55
- if Threshold is None or Threshold == 0:
56
- Threshold=threshold_d
57
 
58
  # different object detection models have additional results
59
  result = {key:value.numpy() for key,value in results.items()}
@@ -179,11 +179,11 @@ test12 = os.path.join(os.path.dirname(__file__), "data/test12.jpeg")
179
  base_image = gr.Interface(
180
  fn=predict,
181
  # inputs=[gr.Image(type="pil"),gr.Slider(minimum=0.01, maximum=1, value=0.38 ,label="Threshold",info="[not in used]to set prediction confidence threshold")],
182
- inputs=[gr.Image(type="pil"),gr.Textbox(value=threshold_d ,label="[WIP]To change default 0.38 prediction confidence Threshold",info="[not in used]Select image with 0.38 threshold to start, you may amend threshold after each first image inference")],
183
 
184
- outputs=[gr.Image(type="pil",label="Base Model Inference"),gr.Image(type="pil",label="Tuned Model Inference"),gr.Textbox(label="[WIP]Both images inferenced threshold")],
185
  title="Luffy and Chopper Head detection. SSD mobile net V2 320x320",
186
- description="Upload a Image for prediction or click on below examples. Prediction confident >38% will be shown in dectected images. Threshold slider is WIP",
187
  examples=
188
  [[test1],[test2],[test3],[test4],[test5],[test6],[test7],[test8],[test9],[test10],[test11],[test12],],
189
  cache_examples=True,examples_per_page=12 #,label="select image with 0.38 threshold to inference, you may amend threshold after inference"
 
42
  image_np = pil_image_as_numpy_array(pilimg)
43
 
44
  if Threshold is None or Threshold == 0:
45
+ Threshold=threshold_d
46
  else:
47
  Threshold= float(Threshold)
48
 
 
52
 
53
  results = detection_model(image_np)
54
 
55
+ # if Threshold is None or Threshold == 0:
56
+ # Threshold=threshold_d
57
 
58
  # different object detection models have additional results
59
  result = {key:value.numpy() for key,value in results.items()}
 
179
  base_image = gr.Interface(
180
  fn=predict,
181
  # inputs=[gr.Image(type="pil"),gr.Slider(minimum=0.01, maximum=1, value=0.38 ,label="Threshold",info="[not in used]to set prediction confidence threshold")],
182
+ inputs=[gr.Image(type="pil"),gr.Textbox(value=threshold_d ,label="To change default 0.38 prediction confidence Threshold. Range 0.01 to 1",info="Select any image below to start, you may amend threshold after first inference")],
183
 
184
+ outputs=[gr.Image(type="pil",label="Base Model Inference"),gr.Image(type="pil",label="Tuned Model Inference"),gr.Textbox(label="Both images inferenced threshold")],
185
  title="Luffy and Chopper Head detection. SSD mobile net V2 320x320",
186
+ description="Upload a Image for prediction or click on below examples. Prediction confident is defaut t >38%, you may adjust after first inference",
187
  examples=
188
  [[test1],[test2],[test3],[test4],[test5],[test6],[test7],[test8],[test9],[test10],[test11],[test12],],
189
  cache_examples=True,examples_per_page=12 #,label="select image with 0.38 threshold to inference, you may amend threshold after inference"