Spaces:
Running
Running
import matplotlib.pyplot as plt | |
import numpy as np | |
from six import BytesIO | |
from PIL import Image | |
import tensorflow as tf | |
from object_detection.utils import label_map_util | |
from object_detection.utils import visualization_utils as viz_utils | |
from object_detection.utils import ops as utils_op | |
import tarfile | |
import wget | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
import os | |
import cv2 | |
from tqdm import tqdm | |
PATH_TO_LABELS = 'data/label_map.pbtxt' | |
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) | |
def pil_image_as_numpy_array(pilimg): | |
img_array = tf.keras.utils.img_to_array(pilimg) | |
img_array = np.expand_dims(img_array, axis=0) | |
return img_array | |
def load_image_into_numpy_array(path): | |
image = None | |
image_data = tf.io.gfile.GFile(path, 'rb').read() | |
image = Image.open(BytesIO(image_data)) | |
return pil_image_as_numpy_array(image) | |
def load_model(): | |
download_dir = snapshot_download(REPO_ID) | |
saved_model_dir = os.path.join(download_dir, "saved_model") | |
detection_model = tf.saved_model.load(saved_model_dir) | |
return detection_model | |
def predict(pilimg): | |
image_np = pil_image_as_numpy_array(pilimg) | |
return predict2(image_np) | |
def predict2(image_np): | |
results = detection_model(image_np) | |
# different object detection models have additional results | |
result = {key:value.numpy() for key,value in results.items()} | |
label_id_offset = 0 | |
image_np_with_detections = image_np.copy() | |
viz_utils.visualize_boxes_and_labels_on_image_array( | |
image_np_with_detections[0], | |
result['detection_boxes'][0], | |
(result['detection_classes'][0] + label_id_offset).astype(int), | |
result['detection_scores'][0], | |
category_index, | |
use_normalized_coordinates=True, | |
max_boxes_to_draw=200, | |
min_score_thresh=.60, | |
agnostic_mode=False, | |
line_thickness=2) | |
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0]) | |
return result_pil_img | |
def detect_video(video): | |
# Create a video capture object | |
cap = cv2.VideoCapture(video) | |
nb_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
frame_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
# Process frames in a loop | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
for i in tqdm(range(nb_frames)): | |
ret, image_np = video_reader.read() | |
input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.uint8) | |
results = detection_model(input_tensor) | |
image_np_with_detections = viz_utils.visualize_boxes_and_labels_on_image_array( | |
image_np, | |
results['detection_boxes'][0].numpy(), | |
(results['detection_classes'][0].numpy()+ label_id_offset).astype(int), | |
results['detection_scores'][0].numpy(), | |
category_index, | |
use_normalized_coordinates=True, | |
max_boxes_to_draw=200, | |
min_score_thresh=.50, | |
agnostic_mode=False, | |
line_thickness=2) | |
# Yield the processed frame | |
yield image_np_with_detections | |
# Release resources | |
cap.release() | |
REPO_ID = "apailang/mytfodmodel" | |
detection_model = load_model() | |
# pil_image = Image.open(image_path) | |
# image_arr = pil_image_as_numpy_array(pil_image) | |
# predicted_img = predict(image_arr) | |
# predicted_img.save('predicted.jpg') | |
test1 = os.path.join(os.path.dirname(__file__), "data/test1.jpeg") | |
test2 = os.path.join(os.path.dirname(__file__), "data/test2.jpeg") | |
test3 = os.path.join(os.path.dirname(__file__), "data/test3.jpeg") | |
test4 = os.path.join(os.path.dirname(__file__), "data/test4.jpeg") | |
test5 = os.path.join(os.path.dirname(__file__), "data/test5.jpeg") | |
test6 = os.path.join(os.path.dirname(__file__), "data/test6.jpeg") | |
test7 = os.path.join(os.path.dirname(__file__), "data/test7.jpeg") | |
test8 = os.path.join(os.path.dirname(__file__), "data/test8.jpeg") | |
test9 = os.path.join(os.path.dirname(__file__), "data/test9.jpeg") | |
test10 = os.path.join(os.path.dirname(__file__), "data/test10.jpeg") | |
test11 = os.path.join(os.path.dirname(__file__), "data/test11.jpeg") | |
test12 = os.path.join(os.path.dirname(__file__), "data/test12.jpeg") | |
tts_demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil"), | |
title="Image Prediction Interface", | |
description="Upload a Image for prediction", | |
examples=[[test1],[test2],[test3],[test4],[test5],[test6],[test7],[test8],[test9],[test10],[test11],[test12],], | |
cache_examples=True | |
)#.launch(share=True) | |
a = os.path.join(os.path.dirname(__file__), "data/a.mp4") # Video | |
b = os.path.join(os.path.dirname(__file__), "data/b.mp4") # Video | |
c = os.path.join(os.path.dirname(__file__), "data/c.mp4") # Video | |
stt_demo = gr.Interface( | |
fn=detect_video, #detect_video | |
inputs=gr.Video(), | |
outputs=gr.Video(), | |
examples=[ | |
[a], | |
[b], | |
[c], | |
], | |
cache_examples=True | |
) | |
demo = gr.TabbedInterface([tts_demo, stt_demo], ["Image", "Video"]) | |
if __name__ == "__main__": | |
demo.launch() |