23A464A / app.py
apailang's picture
Update app.py
a3be0e0
raw
history blame
9.04 kB
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget
import gradio as gr
from huggingface_hub import snapshot_download
import os
import cv2
from tqdm import tqdm
PATH_TO_LABELS = 'data/label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
img_array = np.expand_dims(img_array, axis=0)
return img_array
def load_image_into_numpy_array(path):
image = None
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
return pil_image_as_numpy_array(image)
def load_model(model_repo_id):
download_dir = snapshot_download(model_repo_id)
saved_model_dir = os.path.join(download_dir, "saved_model")
detection_model = tf.saved_model.load(saved_model_dir)
return detection_model
def predict(pilimg,Threshold):
image_np = pil_image_as_numpy_array(pilimg)
if Threshold is None or Threshold == 0:
Threshold=threshold_d
else:
Threshold= float(Threshold)
return predict2(image_np,Threshold),predict3(image_np,Threshold),Threshold
def predict2(image_np,Threshold):
results = detection_model(image_np)
# if Threshold is None or Threshold == 0:
# Threshold=threshold_d
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=20,
min_score_thresh=Threshold,#0.38,
agnostic_mode=False,
line_thickness=2)
result_pil_img2 = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img2
def predict3(image_np,Threshold):
results = detection_model2(image_np)
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=20,
min_score_thresh=Threshold,#.38,
agnostic_mode=False,
line_thickness=2)
result_pil_img4 = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img4
# def detect_video(video):
# # Create a video capture object
# cap = cv2.VideoCapture(video)
# # Process frames in a loop
# while cap.isOpened():
# ret, frame = cap.read()
# if not ret:
# break
# # Expand dimensions since model expects images to have shape: [1, None, None, 3]
# image_np_expanded = np.expand_dims(frame, axis=0)
# # Run inference
# output_dict = model(image_np_expanded)
# # Extract detections
# boxes = output_dict['detection_boxes'][0].numpy()
# scores = output_dict['detection_scores'][0].numpy()
# classes = output_dict['detection_classes'][0].numpy().astype(np.int64)
# # Draw bounding boxes and labels
# image_np_with_detections = viz_utils.visualize_boxes_and_labels_on_image_array(
# frame,
# boxes,
# classes,
# scores,
# category_index,
# use_normalized_coordinates=True,
# max_boxes_to_draw=20,
# min_score_thresh=.5,
# agnostic_mode=False)
# # Yield the processed frame
# yield image_np_with_detections
# # Release resources
# cap.release()
a = os.path.join(os.path.dirname(__file__), "data/c_base_detected.mp4") # Video
b = os.path.join(os.path.dirname(__file__), "data/c_tuned_detected.mp4") # Video
# def video_demo(video1, video2):
# return [video1, video2]
label_id_offset = 0
threshold_d= 0.38
REPO_ID = "apailang/mytfodmodel"
detection_model = load_model(REPO_ID)
REPO_ID2 = "apailang/mytfodmodeltuned"
detection_model2 = load_model(REPO_ID2)
samples_folder = 'data'
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)
# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')
test1 = os.path.join(os.path.dirname(__file__), "data/test1.jpeg")
test2 = os.path.join(os.path.dirname(__file__), "data/test2.jpeg")
test3 = os.path.join(os.path.dirname(__file__), "data/test3.jpeg")
test4 = os.path.join(os.path.dirname(__file__), "data/test4.jpeg")
test5 = os.path.join(os.path.dirname(__file__), "data/test5.jpeg")
test6 = os.path.join(os.path.dirname(__file__), "data/test6.jpeg")
test7 = os.path.join(os.path.dirname(__file__), "data/test7.jpeg")
test8 = os.path.join(os.path.dirname(__file__), "data/test8.jpeg")
test9 = os.path.join(os.path.dirname(__file__), "data/test9.jpeg")
test10 = os.path.join(os.path.dirname(__file__), "data/test10.jpeg")
test11 = os.path.join(os.path.dirname(__file__), "data/test11.jpeg")
test12 = os.path.join(os.path.dirname(__file__), "data/test12.jpeg")
base_image = gr.Interface(
fn=predict,
# inputs=[gr.Image(type="pil"),gr.Slider(minimum=0.01, maximum=1, value=0.38 ,label="Threshold",info="[not in used]to set prediction confidence threshold")],
inputs=[gr.Image(type="pil"),gr.Slider(minimum=0.05, maximum=1,step=0.05,value=threshold_d ,label="To change default 0.38 prediction confidence Threshold. Range 0.05 to 1",info="Select any image below to start, you may amend threshold after first inference")],
outputs=[gr.Image(type="pil",label="Base Model Inference"),gr.Image(type="pil",label="Tuned Model Inference"),gr.Textbox(label="Both images inferenced threshold")],
title="Luffy and Chopper Head detection. SSD mobile net V2 320x320 trained with animated characters only",
description="Upload a Image for prediction or click on below examples. Prediction confident is defaut to >38%, you may adjust after first inference",
examples=
[[test1],[test2],[test3],[test4],[test5],[test6],[test7],[test8],[test9],[test10],[test11],[test12],],
cache_examples=True,examples_per_page=12 #,label="select image with 0.38 threshold to inference, you may amend threshold after inference"
)
# tuned_image = gr.Interface(
# fn=predict3,
# inputs=gr.Image(type="pil"),
# outputs=gr.Image(type="pil"),
# title="Luffy and Chopper face detection on images. Result comparison of base vs tuned SSD mobile net V2 320x320",
# description="Upload a Image for prediction or click on below examples. Mobile net tuned with data Augmentation. Prediction confident >38%",
# examples=[[test1],[test2],[test3],[test4],[test5],[test6],[test7],[test8],[test9],[test10],[test11],[test12],],
# cache_examples=True
# )#.launch(share=True)
# a = os.path.join(os.path.dirname(__file__), "data/a.mp4") # Video
# b = os.path.join(os.path.dirname(__file__), "data/b.mp4") # Video
# c = os.path.join(os.path.dirname(__file__), "data/c.mp4") # Video
# video_out_file = os.path.join(samples_folder,'detected' + '.mp4')
# stt_demo = gr.Interface(
# fn=display_two_videos,
# inputs=gr.Video(),
# outputs=gr.Video(type="mp4",label="Detected Video"),
# examples=[
# [a],
# [b],
# [c],
# ],
# cache_examples=False
# )
video = gr.Interface(
fn=lambda x,y: [x,y], #video_demo,
inputs=[gr.Video(label="Base Model Video",interactive=False),gr.Video(label="Tuned Model Video",interactive=False)],
outputs=[gr.Video(label="Base Model Inferenced Video"), gr.Video(label="Tuned Model Inferenced Video")],
examples=[
[a, b]
],
title="Luffy and Chopper face detection on video Result comparison of base vs tuned SSD mobile net V2 320x320",
description="Model has been customed trained to detect Character of Luffy and Chopper with Prediction confident >10%. Videos are pre-inferenced to reduce load time. (Browser zoom out to view right columne - top (base model inference) & bottom(tuned model inference)) "
)
demo = gr.TabbedInterface([base_image, video], ["Images", "Video"])
if __name__ == "__main__":
demo.launch()