Upload Furnitre_tf.ipynb
Browse files- Furnitre_tf.ipynb +574 -0
Furnitre_tf.ipynb
ADDED
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"id": "146BB11JpfDA"
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"import os"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": null,
|
17 |
+
"metadata": {
|
18 |
+
"id": "42hJEdo_pfDB"
|
19 |
+
},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"CUSTOM_MODEL_NAME = 'my_ssd_mobnet' \n",
|
23 |
+
"PRETRAINED_MODEL_NAME = 'ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8'\n",
|
24 |
+
"PRETRAINED_MODEL_URL = 'http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz'\n",
|
25 |
+
"TF_RECORD_SCRIPT_NAME = 'generate_tfrecord.py'\n",
|
26 |
+
"LABEL_MAP_NAME = 'label_map.pbtxt'"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": null,
|
32 |
+
"metadata": {
|
33 |
+
"id": "hbPhYVy_pfDB"
|
34 |
+
},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"paths = {\n",
|
38 |
+
" 'WORKSPACE_PATH': os.path.join('Tensorflow', 'workspace'),\n",
|
39 |
+
" 'SCRIPTS_PATH': os.path.join('Tensorflow','scripts'),\n",
|
40 |
+
" 'APIMODEL_PATH': os.path.join('Tensorflow','models'),\n",
|
41 |
+
" 'ANNOTATION_PATH': os.path.join('Tensorflow', 'workspace','annotations'),\n",
|
42 |
+
" 'IMAGE_PATH': os.path.join('Tensorflow', 'workspace','images'),\n",
|
43 |
+
" 'MODEL_PATH': os.path.join('Tensorflow', 'workspace','models'),\n",
|
44 |
+
" 'PRETRAINED_MODEL_PATH': os.path.join('Tensorflow', 'workspace','pre-trained-models'),\n",
|
45 |
+
" 'CHECKPOINT_PATH': os.path.join('Tensorflow', 'workspace','models',CUSTOM_MODEL_NAME), \n",
|
46 |
+
" 'OUTPUT_PATH': os.path.join('Tensorflow', 'workspace','models',CUSTOM_MODEL_NAME, 'export'), \n",
|
47 |
+
" 'TFJS_PATH':os.path.join('Tensorflow', 'workspace','models',CUSTOM_MODEL_NAME, 'tfjsexport'), \n",
|
48 |
+
" 'TFLITE_PATH':os.path.join('Tensorflow', 'workspace','models',CUSTOM_MODEL_NAME, 'tfliteexport'), \n",
|
49 |
+
" 'PROTOC_PATH':os.path.join('Tensorflow','protoc')\n",
|
50 |
+
" }"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"metadata": {
|
57 |
+
"id": "LwhWZMI0pfDC"
|
58 |
+
},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"files = {\n",
|
62 |
+
" 'PIPELINE_CONFIG':os.path.join('Tensorflow', 'workspace','models', CUSTOM_MODEL_NAME, 'pipeline.config'),\n",
|
63 |
+
" 'TF_RECORD_SCRIPT': os.path.join(paths['SCRIPTS_PATH'], TF_RECORD_SCRIPT_NAME), \n",
|
64 |
+
" 'LABELMAP': os.path.join(paths['ANNOTATION_PATH'], LABEL_MAP_NAME)\n",
|
65 |
+
"}"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": null,
|
71 |
+
"metadata": {
|
72 |
+
"id": "HR-TfDGrpfDC"
|
73 |
+
},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"for path in paths.values():\n",
|
77 |
+
" if not os.path.exists(path):\n",
|
78 |
+
" if os.name == 'posix':\n",
|
79 |
+
" !mkdir -p {path}\n",
|
80 |
+
" if os.name == 'nt':\n",
|
81 |
+
" !mkdir {path}"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": null,
|
87 |
+
"metadata": {
|
88 |
+
"id": "K-Cmz2edpfDE",
|
89 |
+
"scrolled": true
|
90 |
+
},
|
91 |
+
"outputs": [],
|
92 |
+
"source": [
|
93 |
+
"if os.name=='nt':\n",
|
94 |
+
" !pip install wget\n",
|
95 |
+
" import wget"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": null,
|
101 |
+
"metadata": {
|
102 |
+
"id": "iA1DIq5OpfDE"
|
103 |
+
},
|
104 |
+
"outputs": [],
|
105 |
+
"source": [
|
106 |
+
"if not os.path.exists(os.path.join(paths['APIMODEL_PATH'], 'research', 'object_detection')):\n",
|
107 |
+
" !git clone https://github.com/tensorflow/models {paths['APIMODEL_PATH']}"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": null,
|
113 |
+
"metadata": {
|
114 |
+
"id": "rJjMHbnDs3Tv"
|
115 |
+
},
|
116 |
+
"outputs": [],
|
117 |
+
"source": [
|
118 |
+
"# Install Tensorflow Object Detection \n",
|
119 |
+
"if os.name=='posix': \n",
|
120 |
+
" !apt-get install protobuf-compiler\n",
|
121 |
+
" !cd Tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=. && cp object_detection/packages/tf2/setup.py . && python -m pip install . \n",
|
122 |
+
" \n",
|
123 |
+
"if os.name=='nt':\n",
|
124 |
+
" url=\"https://github.com/protocolbuffers/protobuf/releases/download/v3.15.6/protoc-3.15.6-win64.zip\"\n",
|
125 |
+
" wget.download(url)\n",
|
126 |
+
" !move protoc-3.15.6-win64.zip {paths['PROTOC_PATH']}\n",
|
127 |
+
" !cd {paths['PROTOC_PATH']} && tar -xf protoc-3.15.6-win64.zip\n",
|
128 |
+
" os.environ['PATH'] += os.pathsep + os.path.abspath(os.path.join(paths['PROTOC_PATH'], 'bin')) \n",
|
129 |
+
" !cd Tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=. && copy object_detection\\\\packages\\\\tf2\\\\setup.py setup.py && python setup.py build && python setup.py install\n",
|
130 |
+
" !cd Tensorflow/models/research/slim && pip install -e . "
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": null,
|
136 |
+
"metadata": {
|
137 |
+
"scrolled": true
|
138 |
+
},
|
139 |
+
"outputs": [],
|
140 |
+
"source": [
|
141 |
+
"VERIFICATION_SCRIPT = os.path.join(paths['APIMODEL_PATH'], 'research', 'object_detection', 'builders', 'model_builder_tf2_test.py')\n",
|
142 |
+
"# Verify Installation\n",
|
143 |
+
"!python {VERIFICATION_SCRIPT}"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": null,
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [],
|
151 |
+
"source": [
|
152 |
+
"import object_detection"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": null,
|
158 |
+
"metadata": {
|
159 |
+
"scrolled": true
|
160 |
+
},
|
161 |
+
"outputs": [],
|
162 |
+
"source": [
|
163 |
+
"!pip list"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"execution_count": null,
|
169 |
+
"metadata": {
|
170 |
+
"colab": {
|
171 |
+
"base_uri": "https://localhost:8080/"
|
172 |
+
},
|
173 |
+
"id": "csofht2npfDE",
|
174 |
+
"outputId": "ff5471b2-bed2-43f2-959c-327a706527b6"
|
175 |
+
},
|
176 |
+
"outputs": [],
|
177 |
+
"source": [
|
178 |
+
"if os.name =='posix':\n",
|
179 |
+
" !wget {PRETRAINED_MODEL_URL}\n",
|
180 |
+
" !mv {PRETRAINED_MODEL_NAME+'.tar.gz'} {paths['PRETRAINED_MODEL_PATH']}\n",
|
181 |
+
" !cd {paths['PRETRAINED_MODEL_PATH']} && tar -zxvf {PRETRAINED_MODEL_NAME+'.tar.gz'}\n",
|
182 |
+
"if os.name == 'nt':\n",
|
183 |
+
" wget.download(PRETRAINED_MODEL_URL)\n",
|
184 |
+
" !move {PRETRAINED_MODEL_NAME+'.tar.gz'} {paths['PRETRAINED_MODEL_PATH']}\n",
|
185 |
+
" !cd {paths['PRETRAINED_MODEL_PATH']} && tar -zxvf {PRETRAINED_MODEL_NAME+'.tar.gz'}"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": null,
|
191 |
+
"metadata": {
|
192 |
+
"id": "p1BVDWo7pfDC"
|
193 |
+
},
|
194 |
+
"outputs": [],
|
195 |
+
"source": [
|
196 |
+
"labels = [{'name':'Density1Benign', 'id':1}, {'name':'Density1Malignant', 'id':2}]\n",
|
197 |
+
"\n",
|
198 |
+
"with open(files['LABELMAP'], 'w') as f:\n",
|
199 |
+
" for label in labels:\n",
|
200 |
+
" f.write('item { \\n')\n",
|
201 |
+
" f.write('\\tname:\\'{}\\'\\n'.format(label['name']))\n",
|
202 |
+
" f.write('\\tid:{}\\n'.format(label['id']))\n",
|
203 |
+
" f.write('}\\n')"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "code",
|
208 |
+
"execution_count": null,
|
209 |
+
"metadata": {
|
210 |
+
"colab": {
|
211 |
+
"base_uri": "https://localhost:8080/"
|
212 |
+
},
|
213 |
+
"id": "KWpb_BVUpfDD",
|
214 |
+
"outputId": "56ce2a3f-3933-4ee6-8a9d-d5ec65f7d73c"
|
215 |
+
},
|
216 |
+
"outputs": [],
|
217 |
+
"source": [
|
218 |
+
"if not os.path.exists(files['TF_RECORD_SCRIPT']):\n",
|
219 |
+
" !git clone https://github.com/nicknochnack/GenerateTFRecord {paths['SCRIPTS_PATH']}"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": null,
|
225 |
+
"metadata": {
|
226 |
+
"colab": {
|
227 |
+
"base_uri": "https://localhost:8080/"
|
228 |
+
},
|
229 |
+
"id": "UPFToGZqpfDD",
|
230 |
+
"outputId": "0ebb456f-aadc-4a1f-96e6-fbfec1923e1c"
|
231 |
+
},
|
232 |
+
"outputs": [],
|
233 |
+
"source": [
|
234 |
+
"!python {files['TF_RECORD_SCRIPT']} -x {os.path.join(paths['IMAGE_PATH'], 'train')} -l {files['LABELMAP']} -o {os.path.join(paths['ANNOTATION_PATH'], 'train.record')} \n",
|
235 |
+
"!python {files['TF_RECORD_SCRIPT']} -x {os.path.join(paths['IMAGE_PATH'], 'test')} -l {files['LABELMAP']} -o {os.path.join(paths['ANNOTATION_PATH'], 'test.record')} "
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": null,
|
241 |
+
"metadata": {
|
242 |
+
"id": "cOjuTFbwpfDF"
|
243 |
+
},
|
244 |
+
"outputs": [],
|
245 |
+
"source": [
|
246 |
+
"if os.name =='posix':\n",
|
247 |
+
" !cp {os.path.join(paths['PRETRAINED_MODEL_PATH'], PRETRAINED_MODEL_NAME, 'pipeline.config')} {os.path.join(paths['CHECKPOINT_PATH'])}\n",
|
248 |
+
"if os.name == 'nt':\n",
|
249 |
+
" !copy {os.path.join(paths['PRETRAINED_MODEL_PATH'], PRETRAINED_MODEL_NAME, 'pipeline.config')} {os.path.join(paths['CHECKPOINT_PATH'])}"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "code",
|
254 |
+
"execution_count": null,
|
255 |
+
"metadata": {
|
256 |
+
"id": "Z9hRrO_ppfDF"
|
257 |
+
},
|
258 |
+
"outputs": [],
|
259 |
+
"source": [
|
260 |
+
"import tensorflow as tf\n",
|
261 |
+
"from object_detection.utils import config_util\n",
|
262 |
+
"from object_detection.protos import pipeline_pb2\n",
|
263 |
+
"from google.protobuf import text_format"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"cell_type": "code",
|
268 |
+
"execution_count": null,
|
269 |
+
"metadata": {
|
270 |
+
"id": "c2A0mn4ipfDF"
|
271 |
+
},
|
272 |
+
"outputs": [],
|
273 |
+
"source": [
|
274 |
+
"config = config_util.get_configs_from_pipeline_file(files['PIPELINE_CONFIG'])"
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"cell_type": "code",
|
279 |
+
"execution_count": null,
|
280 |
+
"metadata": {
|
281 |
+
"colab": {
|
282 |
+
"base_uri": "https://localhost:8080/"
|
283 |
+
},
|
284 |
+
"id": "uQA13-afpfDF",
|
285 |
+
"outputId": "907496a4-a39d-4b13-8c2c-e5978ecb1f10"
|
286 |
+
},
|
287 |
+
"outputs": [],
|
288 |
+
"source": [
|
289 |
+
"config"
|
290 |
+
]
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"cell_type": "code",
|
294 |
+
"execution_count": null,
|
295 |
+
"metadata": {
|
296 |
+
"id": "9vK5lotDpfDF"
|
297 |
+
},
|
298 |
+
"outputs": [],
|
299 |
+
"source": [
|
300 |
+
"pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()\n",
|
301 |
+
"with tf.io.gfile.GFile(files['PIPELINE_CONFIG'], \"r\") as f: \n",
|
302 |
+
" proto_str = f.read() \n",
|
303 |
+
" text_format.Merge(proto_str, pipeline_config) "
|
304 |
+
]
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"cell_type": "code",
|
308 |
+
"execution_count": null,
|
309 |
+
"metadata": {
|
310 |
+
"id": "rP43Ph0JpfDG"
|
311 |
+
},
|
312 |
+
"outputs": [],
|
313 |
+
"source": [
|
314 |
+
"pipeline_config.model.ssd.num_classes = len(labels)\n",
|
315 |
+
"pipeline_config.train_config.batch_size = 4\n",
|
316 |
+
"pipeline_config.train_config.fine_tune_checkpoint = os.path.join(paths['PRETRAINED_MODEL_PATH'], PRETRAINED_MODEL_NAME, 'checkpoint', 'ckpt-0')\n",
|
317 |
+
"pipeline_config.train_config.fine_tune_checkpoint_type = \"detection\"\n",
|
318 |
+
"pipeline_config.train_input_reader.label_map_path= files['LABELMAP']\n",
|
319 |
+
"pipeline_config.train_input_reader.tf_record_input_reader.input_path[:] = [os.path.join(paths['ANNOTATION_PATH'], 'train.record')]\n",
|
320 |
+
"pipeline_config.eval_input_reader[0].label_map_path = files['LABELMAP']\n",
|
321 |
+
"pipeline_config.eval_input_reader[0].tf_record_input_reader.input_path[:] = [os.path.join(paths['ANNOTATION_PATH'], 'test.record')]"
|
322 |
+
]
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"cell_type": "code",
|
326 |
+
"execution_count": null,
|
327 |
+
"metadata": {
|
328 |
+
"id": "oJvfgwWqpfDG"
|
329 |
+
},
|
330 |
+
"outputs": [],
|
331 |
+
"source": [
|
332 |
+
"config_text = text_format.MessageToString(pipeline_config) \n",
|
333 |
+
"with tf.io.gfile.GFile(files['PIPELINE_CONFIG'], \"wb\") as f: \n",
|
334 |
+
" f.write(config_text) "
|
335 |
+
]
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"cell_type": "code",
|
339 |
+
"execution_count": null,
|
340 |
+
"metadata": {
|
341 |
+
"id": "B-Y2UQmQpfDG"
|
342 |
+
},
|
343 |
+
"outputs": [],
|
344 |
+
"source": [
|
345 |
+
"TRAINING_SCRIPT = os.path.join(paths['APIMODEL_PATH'], 'research', 'object_detection', 'model_main_tf2.py')"
|
346 |
+
]
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"cell_type": "code",
|
350 |
+
"execution_count": null,
|
351 |
+
"metadata": {
|
352 |
+
"id": "jMP2XDfQpfDH"
|
353 |
+
},
|
354 |
+
"outputs": [],
|
355 |
+
"source": [
|
356 |
+
"command = \"python {} --model_dir={} --pipeline_config_path={} --num_train_steps=2000\".format(TRAINING_SCRIPT, paths['CHECKPOINT_PATH'],files['PIPELINE_CONFIG'])"
|
357 |
+
]
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"cell_type": "code",
|
361 |
+
"execution_count": null,
|
362 |
+
"metadata": {
|
363 |
+
"colab": {
|
364 |
+
"base_uri": "https://localhost:8080/"
|
365 |
+
},
|
366 |
+
"id": "A4OXXi-ApfDH",
|
367 |
+
"outputId": "117a0e83-012b-466e-b7a6-ccaa349ac5ab"
|
368 |
+
},
|
369 |
+
"outputs": [],
|
370 |
+
"source": [
|
371 |
+
"print(command)"
|
372 |
+
]
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"cell_type": "code",
|
376 |
+
"execution_count": null,
|
377 |
+
"metadata": {
|
378 |
+
"colab": {
|
379 |
+
"base_uri": "https://localhost:8080/"
|
380 |
+
},
|
381 |
+
"id": "i3ZsJR-qpfDH",
|
382 |
+
"outputId": "cabec5e1-45e6-4f2f-d9cf-297d9c1d0225"
|
383 |
+
},
|
384 |
+
"outputs": [],
|
385 |
+
"source": [
|
386 |
+
"!{command}"
|
387 |
+
]
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"cell_type": "code",
|
391 |
+
"execution_count": null,
|
392 |
+
"metadata": {
|
393 |
+
"id": "80L7-fdPpfDH"
|
394 |
+
},
|
395 |
+
"outputs": [],
|
396 |
+
"source": [
|
397 |
+
"command = \"python {} --model_dir={} --pipeline_config_path={} --checkpoint_dir={}\".format(TRAINING_SCRIPT, paths['CHECKPOINT_PATH'],files['PIPELINE_CONFIG'], paths['CHECKPOINT_PATH'])"
|
398 |
+
]
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"cell_type": "code",
|
402 |
+
"execution_count": null,
|
403 |
+
"metadata": {
|
404 |
+
"colab": {
|
405 |
+
"base_uri": "https://localhost:8080/"
|
406 |
+
},
|
407 |
+
"id": "lYsgEPx9pfDH",
|
408 |
+
"outputId": "8632d48b-91d2-45d9-bcb8-c1b172bf6eed"
|
409 |
+
},
|
410 |
+
"outputs": [],
|
411 |
+
"source": [
|
412 |
+
"print(command)"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"cell_type": "code",
|
417 |
+
"execution_count": null,
|
418 |
+
"metadata": {
|
419 |
+
"id": "lqTV2jGBpfDH"
|
420 |
+
},
|
421 |
+
"outputs": [],
|
422 |
+
"source": [
|
423 |
+
"!{command}"
|
424 |
+
]
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"cell_type": "code",
|
428 |
+
"execution_count": null,
|
429 |
+
"metadata": {
|
430 |
+
"id": "8TYk4_oIpfDI"
|
431 |
+
},
|
432 |
+
"outputs": [],
|
433 |
+
"source": [
|
434 |
+
"import os\n",
|
435 |
+
"import tensorflow as tf\n",
|
436 |
+
"from object_detection.utils import label_map_util\n",
|
437 |
+
"from object_detection.utils import visualization_utils as viz_utils\n",
|
438 |
+
"from object_detection.builders import model_builder\n",
|
439 |
+
"from object_detection.utils import config_util"
|
440 |
+
]
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"cell_type": "code",
|
444 |
+
"execution_count": null,
|
445 |
+
"metadata": {
|
446 |
+
"id": "tDnQg-cYpfDI"
|
447 |
+
},
|
448 |
+
"outputs": [],
|
449 |
+
"source": [
|
450 |
+
"# Load pipeline config and build a detection model\n",
|
451 |
+
"configs = config_util.get_configs_from_pipeline_file(files['PIPELINE_CONFIG'])\n",
|
452 |
+
"detection_model = model_builder.build(model_config=configs['model'], is_training=False)\n",
|
453 |
+
"\n",
|
454 |
+
"# Restore checkpoint\n",
|
455 |
+
"ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)\n",
|
456 |
+
"ckpt.restore(os.path.join(paths['CHECKPOINT_PATH'], 'ckpt-9')).expect_partial()\n",
|
457 |
+
"\n",
|
458 |
+
"@tf.function\n",
|
459 |
+
"def detect_fn(image):\n",
|
460 |
+
" image, shapes = detection_model.preprocess(image)\n",
|
461 |
+
" prediction_dict = detection_model.predict(image, shapes)\n",
|
462 |
+
" detections = detection_model.postprocess(prediction_dict, shapes)\n",
|
463 |
+
" return detections"
|
464 |
+
]
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"cell_type": "code",
|
468 |
+
"execution_count": null,
|
469 |
+
"metadata": {
|
470 |
+
"id": "Y_MKiuZ4pfDI"
|
471 |
+
},
|
472 |
+
"outputs": [],
|
473 |
+
"source": [
|
474 |
+
"import cv2 \n",
|
475 |
+
"import numpy as np\n",
|
476 |
+
"from matplotlib import pyplot as plt\n",
|
477 |
+
"%matplotlib inline"
|
478 |
+
]
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"cell_type": "code",
|
482 |
+
"execution_count": null,
|
483 |
+
"metadata": {
|
484 |
+
"id": "cBDbIhNapfDI"
|
485 |
+
},
|
486 |
+
"outputs": [],
|
487 |
+
"source": [
|
488 |
+
"category_index = label_map_util.create_category_index_from_labelmap(files['LABELMAP'])"
|
489 |
+
]
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"cell_type": "code",
|
493 |
+
"execution_count": null,
|
494 |
+
"metadata": {
|
495 |
+
"id": "Lx3crOhOzITB"
|
496 |
+
},
|
497 |
+
"outputs": [],
|
498 |
+
"source": [
|
499 |
+
"IMAGE_PATH = os.path.join(paths['IMAGE_PATH'], 'test', '20587612 (36).png')"
|
500 |
+
]
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"cell_type": "code",
|
504 |
+
"execution_count": null,
|
505 |
+
"metadata": {
|
506 |
+
"colab": {
|
507 |
+
"base_uri": "https://localhost:8080/",
|
508 |
+
"height": 269
|
509 |
+
},
|
510 |
+
"id": "Tpzn1SMry1yK",
|
511 |
+
"outputId": "c392a2c5-10fe-4fc4-9998-a1d4c7db2bd3"
|
512 |
+
},
|
513 |
+
"outputs": [],
|
514 |
+
"source": [
|
515 |
+
"img = cv2.imread(IMAGE_PATH)\n",
|
516 |
+
"image_np = np.array(img)\n",
|
517 |
+
"\n",
|
518 |
+
"input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)\n",
|
519 |
+
"detections = detect_fn(input_tensor)\n",
|
520 |
+
"\n",
|
521 |
+
"num_detections = int(detections.pop('num_detections'))\n",
|
522 |
+
"detections = {key: value[0, :num_detections].numpy()\n",
|
523 |
+
" for key, value in detections.items()}\n",
|
524 |
+
"detections['num_detections'] = num_detections\n",
|
525 |
+
"\n",
|
526 |
+
"# detection_classes should be ints.\n",
|
527 |
+
"detections['detection_classes'] = detections['detection_classes'].astype(np.int64)\n",
|
528 |
+
"\n",
|
529 |
+
"label_id_offset = 1\n",
|
530 |
+
"image_np_with_detections = image_np.copy()\n",
|
531 |
+
"\n",
|
532 |
+
"viz_utils.visualize_boxes_and_labels_on_image_array(\n",
|
533 |
+
" image_np_with_detections,\n",
|
534 |
+
" detections['detection_boxes'],\n",
|
535 |
+
" detections['detection_classes']+label_id_offset,\n",
|
536 |
+
" detections['detection_scores'],\n",
|
537 |
+
" category_index,\n",
|
538 |
+
" use_normalized_coordinates=True,\n",
|
539 |
+
" max_boxes_to_draw=5,\n",
|
540 |
+
" min_score_thresh=.2,\n",
|
541 |
+
" agnostic_mode=False)\n",
|
542 |
+
"\n",
|
543 |
+
"plt.imshow(cv2.cvtColor(image_np_with_detections, cv2.COLOR_BGR2RGB))\n",
|
544 |
+
"plt.show()"
|
545 |
+
]
|
546 |
+
}
|
547 |
+
],
|
548 |
+
"metadata": {
|
549 |
+
"accelerator": "GPU",
|
550 |
+
"colab": {
|
551 |
+
"name": "3. Training and Detection.ipynb",
|
552 |
+
"provenance": []
|
553 |
+
},
|
554 |
+
"kernelspec": {
|
555 |
+
"display_name": "hamza1",
|
556 |
+
"language": "python",
|
557 |
+
"name": "hamza1"
|
558 |
+
},
|
559 |
+
"language_info": {
|
560 |
+
"codemirror_mode": {
|
561 |
+
"name": "ipython",
|
562 |
+
"version": 3
|
563 |
+
},
|
564 |
+
"file_extension": ".py",
|
565 |
+
"mimetype": "text/x-python",
|
566 |
+
"name": "python",
|
567 |
+
"nbconvert_exporter": "python",
|
568 |
+
"pygments_lexer": "ipython3",
|
569 |
+
"version": "3.8.0"
|
570 |
+
}
|
571 |
+
},
|
572 |
+
"nbformat": 4,
|
573 |
+
"nbformat_minor": 4
|
574 |
+
}
|