nyxion-rag / rag_demo.py
nyxionlabs's picture
Upload 3 files
e2ffd2f verified
# --- quiet TensorFlow / tf-keras noise (must be first lines in the file) -----
import os, warnings
# Hide TF C++ INFO/WARNING/ERROR levels except errors
os.environ.setdefault("TF_CPP_MIN_LOG_LEVEL", "3")
# Stop the oneDNN notice you’re seeing
os.environ.setdefault("TF_ENABLE_ONEDNN_OPTS", "0")
# Silence specific deprecation chatter from tf_keras
warnings.filterwarnings(
"ignore",
category=DeprecationWarning,
message=r".*tf\.losses\.sparse_softmax_cross_entropy.*",
)
# Blanket-ignore DeprecationWarnings originating from tensorflow / tf_keras modules
warnings.filterwarnings("ignore", category=DeprecationWarning, module=r"^(tensorflow|tf_keras)\b")
warnings.filterwarnings("ignore", category=UserWarning, module=r"^(tensorflow|tf_keras)\b")
# -----------------------------------------------------------------------------
# (now your existing imports follow)
from contextlib import asynccontextmanager
import argparse
import os
import sys
import json
import time
import pickle
import pathlib
from typing import List, Tuple, Dict, Any
import numpy as np
from tqdm import tqdm
# --- DEV-ONLY TOKENS (you asked to avoid .env) --------------------------------
OPENAI_API_KEY = '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' # <<< put your dev key here
OPENAI_MODEL = "gpt-4o-mini" # solid + cost-effective for demo
# --- Heavy deps ----------------------------------------------------------------
try:
import faiss # type: ignore
except Exception as e:
print("FAISS is required. pip install faiss-cpu", file=sys.stderr)
raise
try:
from datasets import load_dataset # type: ignore
except Exception:
print("HuggingFace datasets is required. pip install datasets", file=sys.stderr)
raise
try:
from sentence_transformers import SentenceTransformer # type: ignore
except Exception:
print("sentence-transformers is required. pip install sentence-transformers", file=sys.stderr)
raise
try:
from openai import OpenAI # type: ignore
except Exception:
print("openai>=1.0 is required. pip install openai", file=sys.stderr)
raise
# --- Optional API mode ---------------------------------------------------------
try:
from fastapi import FastAPI
from pydantic import BaseModel
import uvicorn
FASTAPI_AVAILABLE = True
except Exception:
FASTAPI_AVAILABLE = False
# --- Paths --------------------------------------------------------------------
ROOT = pathlib.Path(__file__).resolve().parent
ART = ROOT / "artifacts"
ART.mkdir(exist_ok=True)
INDEX_FILE = ART / "squad_v2.faiss"
META_FILE = ART / "squad_v2_meta.pkl"
# --- Chunking params -----------------------------------------------------------
# SQuAD contexts can be long. We chunk for better retrieval quality.
CHUNK_SIZE = 500 # characters per chunk
CHUNK_OVERLAP = 100 # overlap to preserve context across boundaries
# --- Minimal logging -----------------------------------------------------------
def log(msg: str):
print(f"[RAG] {msg}", flush=True)
# --- Data prep ----------------------------------------------------------------
def chunk_text(text: str, chunk_size: int, overlap: int) -> List[str]:
if not text:
return []
chunks = []
start = 0
while start < len(text):
end = min(len(text), start + chunk_size)
chunks.append(text[start:end])
if end == len(text):
break
start = end - overlap
if start < 0:
start = 0
return chunks
def load_and_prepare_squad() -> List[Dict[str, Any]]:
"""
Returns a list of dicts:
{
'id': str, # synthetic id per chunk
'title': str,
'context': str, # chunk text
'source_meta': { 'split': 'train|validation', 'orig_example_id': ..., 'title': ...}
}
"""
log("Downloading SQuAD v2 via datasets ...")
ds = load_dataset("rajpurkar/squad_v2")
prepared: List[Dict[str, Any]] = []
for split in ["train", "validation"]:
rows = ds[split]
log(f"Processing split: {split} (n={len(rows)})")
for i, ex in enumerate(rows):
title = ex.get("title") or ""
context = ex.get("context") or ""
ex_id = ex.get("id") or f"{split}-{i}"
chunks = chunk_text(context, CHUNK_SIZE, CHUNK_OVERLAP)
for j, chunk in enumerate(chunks):
prepared.append({
"id": f"{ex_id}::chunk{j}",
"title": title,
"context": chunk.strip(),
"source_meta": {"split": split, "orig_example_id": ex_id, "title": title},
})
log(f"Prepared {len(prepared)} chunks total.")
return prepared
# --- Embeddings & FAISS -------------------------------------------------------
def build_index(prepared: List[Dict[str, Any]], model_name: str = "all-MiniLM-L6-v2"):
log(f"Loading embedding model: {model_name}")
st_model = SentenceTransformer(model_name)
texts = [r["context"] for r in prepared]
log("Encoding chunks -> embeddings (this can take a while) ...")
embs = st_model.encode(texts, show_progress_bar=True, convert_to_numpy=True, batch_size=256)
embs = embs.astype("float32")
dim = embs.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(embs)
log(f"Built FAISS index with {index.ntotal} vectors. Saving to disk ...")
faiss.write_index(index, str(INDEX_FILE))
meta = {
"records": prepared,
"embedding_model": model_name,
"dim": dim,
"created_at": time.time(),
"chunk_size": CHUNK_SIZE,
"chunk_overlap": CHUNK_OVERLAP,
}
with open(META_FILE, "wb") as f:
pickle.dump(meta, f)
log("Index + metadata saved.")
return index, meta, st_model
def load_index():
if not INDEX_FILE.exists() or not META_FILE.exists():
raise FileNotFoundError("Index or metadata not found. Run with --build-index first.")
index = faiss.read_index(str(INDEX_FILE))
with open(META_FILE, "rb") as f:
meta = pickle.load(f)
# lazy load embedding model to match metadata
st_model = SentenceTransformer(meta.get("embedding_model", "all-MiniLM-L6-v2"))
return index, meta, st_model
# --- RAG core -----------------------------------------------------------------
class GroundedQA:
def __init__(self, index, records: List[Dict[str, Any]], embed_model, openai_api_key: str):
self.index = index
self.records = records
self.embed_model = embed_model
self.client = OpenAI(api_key=openai_api_key)
def retrieve(self, question: str, k: int = 5) -> List[Tuple[Dict[str, Any], float]]:
q_emb = self.embed_model.encode([question], convert_to_numpy=True).astype("float32")
distances, indices = self.index.search(q_emb, k)
out = []
for rank, idx in enumerate(indices[0]):
rec = self.records[idx]
dist = float(distances[0][rank])
out.append((rec, dist))
return out
def _build_prompt(self, question: str, retrieved: List[Tuple[Dict[str, Any], float]]) -> str:
context_blocks = []
for i, (rec, _) in enumerate(retrieved, start=1):
title = rec.get("title") or "Untitled"
ctx = rec["context"]
context_blocks.append(f"[Source {i} | {title}] {ctx}")
context_text = "\n\n".join(context_blocks)
prompt = (
"You are a precise, grounded Q&A assistant. "
"Answer ONLY using the provided context. If the answer is not in the context, say you don't know.\n"
"Add citations like [Source X] inline where relevant.\n\n"
f"Context:\n{context_text}\n\n"
f"Question: {question}\n\n"
"Answer (with citations):"
)
return prompt
def answer_with_citations(self, question: str, k: int = 5) -> Dict[str, Any]:
retrieved = self.retrieve(question, k=k)
prompt = self._build_prompt(question, retrieved)
resp = self.client.chat.completions.create(
model=OPENAI_MODEL,
messages=[{"role": "user", "content": prompt}],
temperature=0.2,
max_tokens=400,
)
answer = resp.choices[0].message.content.strip()
return {
"answer": answer,
"sources": [
{
"rank": i + 1,
"distance": d,
"id": rec["id"],
"title": rec.get("title"),
"split": rec["source_meta"]["split"],
"excerpt": rec["context"][:240] + ("..." if len(rec["context"]) > 240 else "")
}
for i, (rec, d) in enumerate(retrieved)
],
}
# --- Simple confidence heuristic ----------------------------------------------
def should_review(rag_result: Dict[str, Any], threshold: float = 1.2) -> bool:
# Lower L2 distance -> closer match. We flag for human review if the average distance is high.
if not rag_result.get("sources"):
return True
avg = float(np.mean([s["distance"] for s in rag_result["sources"]]))
return avg > threshold
# --- CLI ----------------------------------------------------------------------
def cli_build_index():
prepared = load_and_prepare_squad()
build_index(prepared)
def cli_query(question: str, k: int = 5):
index, meta, st_model = load_index()
qa = GroundedQA(index, meta["records"], st_model, OPENAI_API_KEY)
result = qa.answer_with_citations(question, k=k)
print("\n=== Answer ===")
print(result["answer"])
print("\n=== Sources ===")
for s in result["sources"]:
print(f"[{s['rank']}] ({s['distance']:.4f}) {s['title']} :: {s['id']}")
print(f" {s['excerpt']}")
print("\nReview flag:", "YES" if should_review(result) else "NO")
# --- API (optional) -----------------------------------------------------------
if FASTAPI_AVAILABLE:
app = FastAPI(title="Nyxion Labs RAG — SQuAD v2")
class AskBody(BaseModel):
question: str
k: int = 5
_STATE = {"qa": None}
if FASTAPI_AVAILABLE:
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup: warm the RAG pipeline once
index, meta, st_model = load_index()
app.state.qa = GroundedQA(index, meta["records"], st_model, OPENAI_API_KEY)
yield
# Teardown (optional): nothing to clean up
app = FastAPI(title="Nyxion Labs RAG — SQuAD v2", lifespan=lifespan)
class AskBody(BaseModel):
question: str
k: int = 5
@app.post("/api/v1/assistant/query")
def query_api(body: AskBody):
qa: GroundedQA = app.state.qa
res = qa.answer_with_citations(body.question, k=body.k)
# Keep types JSON-safe + quick review flag
avg = float(np.mean([s["distance"] for s in res["sources"]])) if res["sources"] else float("inf")
res["needs_review"] = bool(avg > 1.2)
return res
@app.post("/api/v1/assistant/query")
def query_api(body: AskBody):
qa: GroundedQA = _STATE["qa"]
res = qa.answer_with_citations(body.question, k=body.k)
res["needs_review"] = should_review(res)
return res
# --- main ---------------------------------------------------------------------
def parse_args():
p = argparse.ArgumentParser(description="Nyxion Labs — RAG on SQuAD v2")
p.add_argument("--build-index", action="store_true", help="Download SQuAD and build FAISS index")
p.add_argument("--q", "--question", dest="question", type=str, help="Ask a question")
p.add_argument("-k", type=int, default=5, help="Top-k contexts to retrieve")
p.add_argument("--serve", action="store_true", help="Run FastAPI server on :8000")
return p.parse_args()
def main():
args = parse_args()
if args.build_index:
cli_build_index()
return
if args.serve:
if not FASTAPI_AVAILABLE:
print("FastAPI not installed. pip install fastapi uvicorn pydantic", file=sys.stderr)
sys.exit(1)
uvicorn.run("rag_demo:app", host="0.0.0.0", port=8000, reload=False)
return
if args.question:
if OPENAI_API_KEY.startswith("sk-your-dev-key-here"):
log("WARNING: Set your OPENAI_API_KEY at top of file.")
cli_query(args.question, k=args.k)
return
print(__doc__)
if __name__ == "__main__":
main()