|
import gradio as gr |
|
from sentence_transformers import SentenceTransformer |
|
|
|
model_name = "BAAI/bge-large-zh-v1.5" |
|
model = SentenceTransformer(model_name, device="cpu") |
|
|
|
|
|
def cal_sim(*args): |
|
intent = args[0] |
|
cand_list = args[1:] |
|
|
|
cand_list = [cand for cand in cand_list if cand] |
|
sim_output = {} |
|
if not cand_list: |
|
return sim_output |
|
embeddings_1 = model.encode([intent], normalize_embeddings=True) |
|
embeddings_2 = model.encode(cand_list, normalize_embeddings=True) |
|
similarity = embeddings_1 @ embeddings_2.T |
|
similarity = similarity[0] |
|
|
|
for i, sim in zip(cand_list, similarity): |
|
if i: |
|
sim_output[i] = float(sim) |
|
return sim_output |
|
|
|
|
|
with gr.Blocks(title="意圖相似度計算") as demo: |
|
gr.Markdown( |
|
""" |
|
按 Calculate 計算 user query與 candidate list之間的相似度。 |
|
""" |
|
) |
|
|
|
|
|
with gr.Row(): |
|
submit_button = gr.Button("Calculate") |
|
clear_button = gr.Button("Clear") |
|
|
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(): |
|
user_query = gr.Textbox(label="User Query") |
|
candidate_boxes = [gr.Textbox(label=f"Candidate {i+1}") for i in range(30)] |
|
|
|
|
|
with gr.Column(): |
|
output_label = gr.Label(label="Similarity Results") |
|
|
|
|
|
inputs = [user_query] + candidate_boxes |
|
submit_button.click(fn=cal_sim, inputs=inputs, outputs=output_label) |
|
clear_button.click(lambda: (None,) * 31, inputs=[], outputs=inputs) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True, debug=True) |
|
|