toxic-eye / app.py
nyasukun's picture
.
5b13d71
import gradio as gr
from huggingface_hub import InferenceClient
from typing import List, Dict, Optional, Union
import logging
from enum import Enum, auto
import torch
from transformers import AutoTokenizer, pipeline
import spaces
from concurrent.futures import ThreadPoolExecutor, as_completed
# ロガーの設定
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# モデルタイプの定義
LOCAL = "local"
INFERENCE_API = "api"
# モデル定義
TEXT_GENERATION_MODELS = [
{
"name": "Llama-2-7b-chat-hf",
"description": "Llama-2-7b-chat-hf",
"chat_model": True,
"type": INFERENCE_API,
"model_id": "meta-llama/Llama-2-7b-chat-hf"
},
{
"name": "TinyLlama-1.1B-Chat-v1.0",
"description": "TinyLlama-1.1B-Chat-v1.0",
"chat_model": True,
"type": INFERENCE_API,
"model_id": "tinyllama/TinyLlama-1.1B-Chat-v1.0"
},
{
"name": "Mistral-7B-v0.1",
"description": "Mistral-7B-v0.1",
"chat_model": False,
"type": LOCAL,
"model_path": "mistralai/Mistral-7B-v0.1"
}
]
CLASSIFICATION_MODELS = [
{
"name": "Toxic-BERT",
"description": "Fine-tuned for toxic content detection",
"type": LOCAL,
"model_path": "unitary/toxic-bert"
}
]
# グローバル変数でモデルやトークナイザーを管理
tokenizers = {}
pipelines = {}
api_clients = {}
# インファレンスAPIクライアントの初期化
def initialize_api_clients():
"""Inference APIクライアントの初期化"""
for model in TEXT_GENERATION_MODELS + CLASSIFICATION_MODELS:
if model["type"] == INFERENCE_API and "model_id" in model:
logger.info(f"Initializing API client for {model['name']}")
api_clients[model["model_id"]] = InferenceClient(
model["model_id"],
token=True # これによりHFトークンを使用
)
logger.info("API clients initialized")
# ローカルモデルを事前ロード
def preload_local_models():
"""ローカルモデルを事前ロード"""
logger.info("Preloading local models at application startup...")
# テキスト生成モデル
for model in TEXT_GENERATION_MODELS:
if model["type"] == LOCAL and "model_path" in model:
model_path = model["model_path"]
try:
logger.info(f"Preloading text generation model: {model_path}")
tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path)
pipelines[model_path] = pipeline(
"text-generation",
model=model_path,
tokenizer=tokenizers[model_path],
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
logger.info(f"Model preloaded successfully: {model_path}")
except Exception as e:
logger.error(f"Error preloading model {model_path}: {str(e)}")
# 分類モデル
for model in CLASSIFICATION_MODELS:
if model["type"] == LOCAL and "model_path" in model:
model_path = model["model_path"]
try:
logger.info(f"Preloading classification model: {model_path}")
tokenizers[model_path] = AutoTokenizer.from_pretrained(model_path)
pipelines[model_path] = pipeline(
"text-classification",
model=model_path,
tokenizer=tokenizers[model_path],
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
logger.info(f"Model preloaded successfully: {model_path}")
except Exception as e:
logger.error(f"Error preloading model {model_path}: {str(e)}")
@spaces.GPU
def generate_text_local(model_path, chat_model, text):
"""ローカルモデルでのテキスト生成"""
try:
logger.info(f"Running local text generation with {model_path}")
pipeline = pipelines[model_path]
# モデルをGPUに移動(パイプライン全体)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipeline.model = pipeline.model.to(device)
# トークナイザーなど他のパイプラインコンポーネントがGPUを使用するように設定
if hasattr(pipeline, "device"):
pipeline.device = device
# デバイス情報をログに記録
device_info = next(pipeline.model.parameters()).device
logger.info(f"Model {model_path} is running on device: {device_info}")
if chat_model:
outputs = pipeline(
[{"role": "user", "content": text}],
max_new_tokens=40,
do_sample=False,
num_return_sequences=1
)
else:
outputs = pipeline(
text,
max_new_tokens=40,
do_sample=False,
num_return_sequences=1
)
# モデルをCPUに戻す
pipeline.model = pipeline.model.to("cpu")
if hasattr(pipeline, "device"):
pipeline.device = torch.device("cpu")
return outputs[0]["generated_text"]
except Exception as e:
logger.error(f"Error in local text generation with {model_path}: {str(e)}")
return f"Error: {str(e)}"
def generate_text_api(model_id, chat_model, text):
"""API経由でのテキスト生成"""
try:
logger.info(f"Running API text generation with {model_id}")
if chat_model:
response = api_clients[model_id].chat.completions.create(
messages=[{"role": "user", "content": text}],
max_tokens=512
)
response = response.choices[0].message.content
else:
response = api_clients[model_id].text_generation(
text,
max_new_tokens=40,
temperature=0.7)
return response
except Exception as e:
logger.error(f"Error in API text generation with {model_id}: {str(e)}")
return f"Error: {str(e)}"
@spaces.GPU
def classify_text_local(model_path, text):
"""ローカルモデルでのテキスト分類"""
try:
logger.info(f"Running local classification with {model_path}")
pipeline = pipelines[model_path]
# モデルをGPUに移動(パイプライン全体)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipeline.model = pipeline.model.to(device)
# トークナイザーなど他のパイプラインコンポーネントがGPUを使用するように設定
if hasattr(pipeline, "device"):
pipeline.device = device
# デバイス情報をログに記録
device_info = next(pipeline.model.parameters()).device
logger.info(f"Model {model_path} is running on device: {device_info}")
result = pipeline(text)
# モデルをCPUに戻す
pipeline.model = pipeline.model.to("cpu")
if hasattr(pipeline, "device"):
pipeline.device = torch.device("cpu")
return str(result)
except Exception as e:
logger.error(f"Error in local classification with {model_path}: {str(e)}")
return f"Error: {str(e)}"
def classify_text_api(model_id, text):
"""API経由でのテキスト分類"""
try:
logger.info(f"Running API classification with {model_id}")
response = api_clients[model_id].text_classification(text)
return str(response)
except Exception as e:
logger.error(f"Error in API classification with {model_id}: {str(e)}")
return f"Error: {str(e)}"
# Invokeボタンのハンドラ
def handle_invoke(text, selected_types):
"""Invokeボタンのハンドラ"""
results = []
futures_to_model = {} # 各futureとモデルを紐づけるための辞書
with ThreadPoolExecutor(max_workers=len([x for x in TEXT_GENERATION_MODELS + CLASSIFICATION_MODELS if x["type"] in selected_types])) as executor:
futures = []
# テキスト生成モデルの実行
for model in TEXT_GENERATION_MODELS:
if model["type"] in selected_types:
if model["type"] == LOCAL:
future = executor.submit(generate_text_local, model["model_path"], model["chat_model"], text)
futures.append(future)
futures_to_model[future] = model
else: # api
future = executor.submit(generate_text_api, model["model_id"], model["chat_model"], text)
futures.append(future)
futures_to_model[future] = model
# 分類モデルの実行
for model in CLASSIFICATION_MODELS:
if model["type"] in selected_types:
if model["type"] == LOCAL:
future = executor.submit(classify_text_local, model["model_path"], text)
futures.append(future)
futures_to_model[future] = model
else: # api
future = executor.submit(classify_text_api, model["model_id"], text)
futures.append(future)
futures_to_model[future] = model
# 結果の収集(モデルの順序を保持)
all_models = TEXT_GENERATION_MODELS + CLASSIFICATION_MODELS
results = [""] * len(all_models) # 事前に結果リストを初期化
for future in as_completed(futures):
model = futures_to_model[future]
model_index = all_models.index(model)
results[model_index] = future.result()
return results
# モデルの表示状態を更新
def update_model_visibility(selected_types):
"""モデルの表示状態を更新"""
logger.info(f"Updating visibility for types: {selected_types}")
updates = []
for model_outputs in [gen_model_outputs, class_model_outputs]:
for output in model_outputs:
visible = output["type"] in selected_types
logger.info(f"Model {output['name']} (type: {output['type']}): visible = {visible}")
updates.append(gr.update(visible=visible))
return updates
# モデルをロードしUIを更新する
def load_models_and_update_ui():
"""モデルをロードしUIを更新する"""
try:
return gr.update(visible=False), gr.update(visible=True)
except Exception as e:
logger.error(f"Error loading models: {e}")
return gr.update(value=f"Error loading models: {e}"), gr.update(visible=False)
# モデルグリッドの作成
def create_model_grid(models):
"""モデルグリッドの作成"""
outputs = []
with gr.Column() as container:
for i in range(0, len(models), 2):
with gr.Row() as row:
for j in range(min(2, len(models) - i)):
model = models[i + j]
with gr.Column():
with gr.Group() as group:
gr.Markdown(f"### {model['name']}")
gr.Markdown(f"Type: {model['type']}")
output = gr.Textbox(
label="Model Output",
lines=5,
interactive=False,
info=model['description']
)
outputs.append({
"type": model["type"],
"name": model["name"],
"output": output,
"group": group
})
return outputs
# グローバル変数としてUI部品を保持
input_text = None
filter_checkboxes = None
invoke_button = None
gen_model_outputs = []
class_model_outputs = []
community_output = None
# UIの作成
def create_ui():
"""UIの作成"""
global input_text, filter_checkboxes, invoke_button, gen_model_outputs, class_model_outputs, community_output
with gr.Blocks() as demo:
# ロード中コンポーネント
with gr.Group(visible=True) as loading_group:
gr.Markdown("""
# Toxic Eye
### Loading models... This may take a few minutes.
The application is initializing and preloading all models.
Please wait while the models are being loaded...
""")
# メインUIコンポーネント(初期状態では非表示)
with gr.Group(visible=False) as main_ui_group:
# ヘッダー
gr.Markdown("""
# Toxic Eye
This system evaluates the toxicity level of input text using multiple approaches.
""")
# 入力セクション
with gr.Row():
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter text to analyze...",
lines=3
)
# フィルターセクション
with gr.Row():
filter_checkboxes = gr.CheckboxGroup(
choices=[LOCAL, INFERENCE_API],
value=[LOCAL, INFERENCE_API],
label="Filter Models",
info="Choose which types of models to display",
interactive=True
)
# Invokeボタン
with gr.Row():
invoke_button = gr.Button(
"Invoke Selected Models",
variant="primary",
size="lg"
)
# モデルタブ
with gr.Tabs():
with gr.Tab("Text Generation LLM"):
gen_model_outputs = create_model_grid(TEXT_GENERATION_MODELS)
with gr.Tab("Classification LLM"):
class_model_outputs = create_model_grid(CLASSIFICATION_MODELS)
with gr.Tab("Community (Not implemented)"):
with gr.Column():
community_output = gr.Textbox(
label="Related Community Topics",
lines=5,
interactive=False
)
# イベントハンドラの設定
filter_checkboxes.change(
fn=update_model_visibility,
inputs=[filter_checkboxes],
outputs=[
output["group"]
for outputs in [gen_model_outputs, class_model_outputs]
for output in outputs
]
)
invoke_button.click(
fn=handle_invoke,
inputs=[input_text, filter_checkboxes],
outputs=[
output["output"]
for outputs in [gen_model_outputs, class_model_outputs]
for output in outputs
]
)
# 起動時にモデルロード処理を実行
demo.load(
fn=load_models_and_update_ui,
inputs=None,
outputs=[loading_group, main_ui_group]
)
return demo
# メイン関数
def main():
logger.info("Starting Toxic Eye application")
initialize_api_clients()
# モデルのロード
preload_local_models()
logger.info("Models loaded successfully")
demo = create_ui()
demo.launch()
if __name__ == "__main__":
main()