Spaces:
Running
on
T4
Running
on
T4
# this code is adapted from the script contributed by anon from /h/ | |
# modified, from https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/6cff4401824299a983c8e13424018efc347b4a2b/modules/safe.py | |
import io | |
import pickle | |
import collections | |
import sys | |
import traceback | |
import torch | |
import numpy | |
import _codecs | |
import zipfile | |
import re | |
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage | |
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage | |
def encode(*args): | |
out = _codecs.encode(*args) | |
return out | |
class RestrictedUnpickler(pickle.Unpickler): | |
extra_handler = None | |
def persistent_load(self, saved_id): | |
assert saved_id[0] == 'storage' | |
return TypedStorage() | |
def find_class(self, module, name): | |
if self.extra_handler is not None: | |
res = self.extra_handler(module, name) | |
if res is not None: | |
return res | |
if module == 'collections' and name == 'OrderedDict': | |
return getattr(collections, name) | |
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter', '_rebuild_device_tensor_from_numpy']: | |
return getattr(torch._utils, name) | |
if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage', 'float32']: | |
return getattr(torch, name) | |
if module == 'torch.nn.modules.container' and name in ['ParameterDict']: | |
return getattr(torch.nn.modules.container, name) | |
if module == 'numpy.core.multiarray' and name in ['scalar', '_reconstruct']: | |
return getattr(numpy.core.multiarray, name) | |
if module == 'numpy' and name in ['dtype', 'ndarray']: | |
return getattr(numpy, name) | |
if module == '_codecs' and name == 'encode': | |
return encode | |
if module == "pytorch_lightning.callbacks" and name == 'model_checkpoint': | |
import pytorch_lightning.callbacks | |
return pytorch_lightning.callbacks.model_checkpoint | |
if module == "pytorch_lightning.callbacks.model_checkpoint" and name == 'ModelCheckpoint': | |
import pytorch_lightning.callbacks.model_checkpoint | |
return pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint | |
if module == "__builtin__" and name == 'set': | |
return set | |
# Forbid everything else. | |
raise Exception(f"global '{module}/{name}' is forbidden") | |
# Regular expression that accepts 'dirname/version', 'dirname/data.pkl', and 'dirname/data/<number>' | |
allowed_zip_names_re = re.compile(r"^([^/]+)/((data/\d+)|version|(data\.pkl))$") | |
data_pkl_re = re.compile(r"^([^/]+)/data\.pkl$") | |
def check_zip_filenames(filename, names): | |
for name in names: | |
if allowed_zip_names_re.match(name): | |
continue | |
raise Exception(f"bad file inside {filename}: {name}") | |
def check_pt(filename, extra_handler): | |
try: | |
# new pytorch format is a zip file | |
with zipfile.ZipFile(filename) as z: | |
check_zip_filenames(filename, z.namelist()) | |
# find filename of data.pkl in zip file: '<directory name>/data.pkl' | |
data_pkl_filenames = [f for f in z.namelist() if data_pkl_re.match(f)] | |
if len(data_pkl_filenames) == 0: | |
raise Exception(f"data.pkl not found in {filename}") | |
if len(data_pkl_filenames) > 1: | |
raise Exception(f"Multiple data.pkl found in {filename}") | |
with z.open(data_pkl_filenames[0]) as file: | |
unpickler = RestrictedUnpickler(file) | |
unpickler.extra_handler = extra_handler | |
unpickler.load() | |
except zipfile.BadZipfile: | |
# if it's not a zip file, it's an olf pytorch format, with five objects written to pickle | |
with open(filename, "rb") as file: | |
unpickler = RestrictedUnpickler(file) | |
unpickler.extra_handler = extra_handler | |
for i in range(5): | |
unpickler.load() | |
def load(filename, *args, **kwargs): | |
return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs) | |
def load_with_extra(filename, extra_handler=None, *args, **kwargs): | |
""" | |
this function is intended to be used by extensions that want to load models with | |
some extra classes in them that the usual unpickler would find suspicious. | |
Use the extra_handler argument to specify a function that takes module and field name as text, | |
and returns that field's value: | |
```python | |
def extra(module, name): | |
if module == 'collections' and name == 'OrderedDict': | |
return collections.OrderedDict | |
return None | |
safe.load_with_extra('model.pt', extra_handler=extra) | |
``` | |
The alternative to this is just to use safe.unsafe_torch_load('model.pt'), which as the name implies is | |
definitely unsafe. | |
""" | |
try: | |
check_pt(filename, extra_handler) | |
except pickle.UnpicklingError: | |
print(f"Error verifying pickled file from {filename}:", file=sys.stderr) | |
print(traceback.format_exc(), file=sys.stderr) | |
print("The file is most likely corrupted.", file=sys.stderr) | |
return None | |
except Exception: | |
print(f"Error verifying pickled file from {filename}:", file=sys.stderr) | |
print(traceback.format_exc(), file=sys.stderr) | |
print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr) | |
print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr) | |
return None | |
return unsafe_torch_load(filename, *args, **kwargs) | |
class Extra: | |
""" | |
A class for temporarily setting the global handler for when you can't explicitly call load_with_extra | |
(because it's not your code making the torch.load call). The intended use is like this: | |
``` | |
import torch | |
from modules import safe | |
def handler(module, name): | |
if module == 'torch' and name in ['float64', 'float16']: | |
return getattr(torch, name) | |
return None | |
with safe.Extra(handler): | |
x = torch.load('model.pt') | |
``` | |
""" | |
def __init__(self, handler): | |
self.handler = handler | |
def __enter__(self): | |
global global_extra_handler | |
assert global_extra_handler is None, 'already inside an Extra() block' | |
global_extra_handler = self.handler | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
global global_extra_handler | |
global_extra_handler = None | |
unsafe_torch_load = torch.load | |
torch.load = load | |
global_extra_handler = None | |