fciannella's picture
Added the healthcare example
2f49513
raw
history blame
21.7 kB
# SPDX-FileCopyrightText: Copyright (c) 2024-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD 2-Clause License
"""Voice Agent WebRTC Pipeline.
This module implements a voice agent pipeline using WebRTC for real-time
speech-to-speech communication with dynamic prompt support.
"""
import argparse
import asyncio
import json
import os
import sys
import uuid
from pathlib import Path
import uvicorn
from dotenv import load_dotenv
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from loguru import logger
from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.frames.frames import InputAudioRawFrame, LLMMessagesFrame, TTSAudioRawFrame
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
from pipecat.transports.base_transport import TransportParams
from pipecat.transports.network.small_webrtc import SmallWebRTCTransport
from pipecat.transports.network.webrtc_connection import (
IceServer,
SmallWebRTCConnection,
)
from websocket_transcript_output import WebsocketTranscriptOutput
from nvidia_pipecat.processors.audio_util import AudioRecorder
from nvidia_pipecat.processors.nvidia_context_aggregator import (
NvidiaTTSResponseCacher,
create_nvidia_context_aggregator,
)
from nvidia_pipecat.processors.transcript_synchronization import (
BotTranscriptSynchronization,
UserTranscriptSynchronization,
)
from nvidia_pipecat.services.riva_speech import RivaASRService, RivaTTSService
from langgraph_llm_service import LangGraphLLMService
load_dotenv(override=True)
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Store connections by pc_id
pcs_map: dict[str, SmallWebRTCConnection] = {}
contexts_map: dict[str, OpenAILLMContext] = {}
# Helper: Build ICE servers for client (browser) using Twilio token if configured
def _build_client_ice_servers() -> list[dict]:
# Prefer Twilio dynamic credentials
sid = os.getenv("TWILIO_ACCOUNT_SID")
tok = os.getenv("TWILIO_AUTH_TOKEN")
if sid and tok:
try:
# Import lazily to avoid hard dependency when not configured
from twilio.rest import Client # type: ignore
client = Client(sid, tok)
token = client.tokens.create()
servers: list[dict] = []
# Twilio may return either 'ice_servers' with 'url' or 'urls'
for s in getattr(token, "ice_servers", []) or []:
url_val = s.get("urls") if isinstance(s, dict) else getattr(s, "urls", None)
if not url_val:
url_val = s.get("url") if isinstance(s, dict) else getattr(s, "url", None)
entry: dict = {"urls": url_val}
u = s.get("username") if isinstance(s, dict) else getattr(s, "username", None)
c = s.get("credential") if isinstance(s, dict) else getattr(s, "credential", None)
if u:
entry["username"] = u
if c:
entry["credential"] = c
if entry.get("urls"):
servers.append(entry)
# Always include a public STUN fallback
servers.append({"urls": "stun:stun.l.google.com:19302"})
return servers
except Exception as e: # noqa: BLE001
logger.warning(f"Twilio TURN fetch failed, falling back to env/static: {e}")
# Static env fallback
servers: list[dict] = []
turn_url = os.getenv("TURN_SERVER_URL") or os.getenv("TURN_URL")
turn_user = os.getenv("TURN_USERNAME") or os.getenv("TURN_USER")
turn_pass = os.getenv("TURN_PASSWORD") or os.getenv("TURN_PASS")
if turn_url:
server: dict = {"urls": turn_url}
if turn_user:
server["username"] = turn_user
if turn_pass:
server["credential"] = turn_pass
servers.append(server)
servers.append({"urls": "stun:stun.l.google.com:19302"})
return servers
# Helper: Convert client ICE dicts to server IceServer objects
def _build_server_ice_servers() -> list[IceServer]:
out: list[IceServer] = []
for s in _build_client_ice_servers():
urls = s.get("urls")
username = s.get("username", "")
credential = s.get("credential", "")
# urls may be a list or a string. Normalize to list for safety.
if isinstance(urls, list):
for u in urls:
out.append(IceServer(urls=u, username=username, credential=credential))
elif isinstance(urls, str) and urls:
out.append(IceServer(urls=urls, username=username, credential=credential))
return out
# Backward-compatible static servers (unused when Twilio configured)
ice_servers = (
[
IceServer(
urls=os.getenv("TURN_SERVER_URL", ""),
username=os.getenv("TURN_USERNAME", ""),
credential=os.getenv("TURN_PASSWORD", ""),
)
]
if os.getenv("TURN_SERVER_URL")
else []
)
@app.get("/assistants")
async def list_assistants(request: Request):
"""Return a list of assistants from LangGraph, with robust fallbacks.
Output: List of {assistant_id, graph_id?, name?, description?, display_name}.
"""
import requests
base_url = os.getenv("LANGGRAPH_BASE_URL", "http://127.0.0.1:2024").rstrip("/")
inbound_auth = request.headers.get("authorization")
token = os.getenv("LANGGRAPH_AUTH_TOKEN") or os.getenv("AUTH0_ACCESS_TOKEN") or os.getenv("AUTH_BEARER_TOKEN")
headers = {"Authorization": inbound_auth} if inbound_auth else ({"Authorization": f"Bearer {token}"} if token else None)
def normalize_entries(raw_items: list) -> list[dict]:
results: list[dict] = []
for entry in raw_items:
assistant_id = None
if isinstance(entry, dict):
assistant_id = entry.get("assistant_id") or entry.get("id") or entry.get("name")
elif isinstance(entry, str):
assistant_id = entry
if not assistant_id:
continue
results.append({"assistant_id": assistant_id, **(entry if isinstance(entry, dict) else {})})
return results
# Try GET /assistants first (newer servers)
items: list[dict] = []
try:
get_resp = requests.get(f"{base_url}/assistants", params={"limit": 100}, timeout=8, headers=headers)
if get_resp.ok:
data = get_resp.json() or []
if isinstance(data, dict):
data = data.get("items") or data.get("results") or data.get("assistants") or []
items = normalize_entries(data)
except Exception as exc: # noqa: BLE001
logger.warning(f"GET /assistants failed: {exc}")
# Fallback: POST /assistants/search (older servers)
if not items:
try:
search_resp = requests.post(
f"{base_url}/assistants/search",
json={
"metadata": {},
"limit": 100,
"offset": 0,
"sort_by": "assistant_id",
"sort_order": "asc",
"select": ["assistant_id"],
},
timeout=10,
headers=headers,
)
if search_resp.ok:
data = search_resp.json() or []
if isinstance(data, dict):
data = data.get("items") or data.get("results") or []
items = normalize_entries(data)
except Exception as exc: # noqa: BLE001
logger.warning(f"POST /assistants/search failed: {exc}")
# Best-effort: enrich with details when possible
enriched: list[dict] = []
for item in items:
detail = dict(item)
assistant_id = detail.get("assistant_id")
if assistant_id:
try:
detail_resp = requests.get(f"{base_url}/assistants/{assistant_id}", timeout=5, headers=headers)
if detail_resp.ok:
d = detail_resp.json() or {}
detail.update(
{
"graph_id": d.get("graph_id"),
"name": d.get("name"),
"description": d.get("description"),
"metadata": d.get("metadata") or {},
}
)
except Exception:
pass
md = (detail.get("metadata") or {}) if isinstance(detail.get("metadata"), dict) else {}
display_name = (
detail.get("name")
or md.get("display_name")
or md.get("friendly_name")
or detail.get("graph_id")
or detail.get("assistant_id")
)
detail["display_name"] = display_name
enriched.append(detail)
# Final fallback: read local graphs from agents/langgraph.json
if not enriched:
try:
config_path = Path(__file__).parent / "agents" / "langgraph.json"
with open(config_path, encoding="utf-8") as f:
cfg = json.load(f) or {}
graphs = (cfg.get("graphs") or {}) if isinstance(cfg, dict) else {}
for graph_id in graphs.keys():
enriched.append({
"assistant_id": graph_id,
"graph_id": graph_id,
"display_name": graph_id,
})
except Exception as exc: # noqa: BLE001
logger.error(f"Failed to read local agents/langgraph.json: {exc}")
return enriched
async def run_bot(webrtc_connection, ws: WebSocket, assistant_override: str | None = None):
"""Run the voice agent bot with WebRTC connection and WebSocket.
Args:
webrtc_connection: The WebRTC connection for audio streaming
ws: WebSocket connection for communication
"""
stream_id = uuid.uuid4()
transport_params = TransportParams(
audio_in_enabled=True,
audio_in_sample_rate=16000,
audio_out_sample_rate=16000,
audio_out_enabled=True,
vad_analyzer=SileroVADAnalyzer(),
audio_out_10ms_chunks=5,
)
transport = SmallWebRTCTransport(
webrtc_connection=webrtc_connection,
params=transport_params,
)
selected_assistant = assistant_override or os.getenv("LANGGRAPH_ASSISTANT", "ace-base-agent")
logger.info(f"Using LangGraph assistant: {selected_assistant}")
llm = LangGraphLLMService(
base_url=os.getenv("LANGGRAPH_BASE_URL", "http://127.0.0.1:2024"),
assistant=selected_assistant,
user_email=os.getenv("USER_EMAIL", "test@example.com"),
stream_mode=os.getenv("LANGGRAPH_STREAM_MODE", "values"),
debug_stream=os.getenv("LANGGRAPH_DEBUG_STREAM", "false").lower() == "true",
)
# stt = RivaASRService(
# server=os.getenv("RIVA_ASR_URL", "localhost:50051"),
# api_key=os.getenv("NVIDIA_API_KEY"),
# language=os.getenv("RIVA_ASR_LANGUAGE", "en-US"),
# sample_rate=16000,
# model=os.getenv("RIVA_ASR_MODEL", "parakeet-1.1b-en-US-asr-streaming-silero-vad-asr-bls-ensemble"),
# )
stt = RivaASRService(
# server=os.getenv("RIVA_ASR_URL", "localhost:50051"), # default url is grpc.nvcf.nvidia.com:443
api_key=os.getenv("RIVA_API_KEY"),
function_id=os.getenv("NVIDIA_ASR_FUNCTION_ID", "52b117d2-6c15-4cfa-a905-a67013bee409"),
language=os.getenv("RIVA_ASR_LANGUAGE", "en-US"),
sample_rate=16000,
model=os.getenv("RIVA_ASR_MODEL", "parakeet-1.1b-en-US-asr-streaming-silero-vad-asr-bls-ensemble"),
)
# stt = RivaASRService(
# server=os.getenv("RIVA_ASR_URL", "localhost:50051"),
# api_key=os.getenv("NVIDIA_API_KEY"),
# language=os.getenv("RIVA_ASR_LANGUAGE", "en-US"),
# sample_rate=16000,
# model=os.getenv("RIVA_ASR_MODEL", "parakeet-1.1b-en-US-asr-streaming-silero-vad-asr-bls-ensemble"),
# )
# Load IPA dictionary with error handling
ipa_file = Path(__file__).parent / "ipa.json"
try:
with open(ipa_file, encoding="utf-8") as f:
ipa_dict = json.load(f)
except FileNotFoundError as e:
logger.error(f"IPA dictionary file not found at {ipa_file}")
raise FileNotFoundError(f"IPA dictionary file not found at {ipa_file}") from e
except json.JSONDecodeError as e:
logger.error(f"Invalid JSON in IPA dictionary file: {e}")
raise ValueError(f"Invalid JSON in IPA dictionary file: {e}") from e
except Exception as e:
logger.error(f"Error loading IPA dictionary: {e}")
raise
tts = RivaTTSService(
# server=os.getenv("RIVA_TTS_URL", "localhost:50051"), # default url is grpc.nvcf.nvidia.com:443
api_key=os.getenv("RIVA_API_KEY"),
function_id=os.getenv("NVIDIA_TTS_FUNCTION_ID", "4e813649-d5e4-4020-b2be-2b918396d19d"),
voice_id=os.getenv("RIVA_TTS_VOICE_ID", "Magpie-ZeroShot.Female-1"),
model=os.getenv("RIVA_TTS_MODEL", "magpie_tts_ensemble-Magpie-ZeroShot"),
language=os.getenv("RIVA_TTS_LANGUAGE", "en-US"),
zero_shot_audio_prompt_file=(
Path(os.getenv("ZERO_SHOT_AUDIO_PROMPT")) if os.getenv("ZERO_SHOT_AUDIO_PROMPT") else None
),
)
# tts = RivaTTSService(
# server=os.getenv("RIVA_TTS_URL", "localhost:50051"),
# api_key=os.getenv("NVIDIA_API_KEY"),
# voice_id=os.getenv("RIVA_TTS_VOICE_ID", "Magpie-ZeroShot.Female-1"),
# model=os.getenv("RIVA_TTS_MODEL", "magpie_tts_ensemble-Magpie-ZeroShot"),
# language=os.getenv("RIVA_TTS_LANGUAGE", "en-US"),
# zero_shot_audio_prompt_file=(
# Path(os.getenv("ZERO_SHOT_AUDIO_PROMPT", str(Path(__file__).parent / "model-em_sample-02.wav")))
# if os.getenv("ZERO_SHOT_AUDIO_PROMPT")
# else None
# ),
# ipa_dict=ipa_dict,
# )
# Create audio_dumps directory if it doesn't exist
audio_dumps_dir = Path(__file__).parent / "audio_dumps"
audio_dumps_dir.mkdir(exist_ok=True)
asr_recorder = AudioRecorder(
output_file=str(audio_dumps_dir / f"asr_recording_{stream_id}.wav"),
params=transport_params,
frame_type=InputAudioRawFrame,
)
tts_recorder = AudioRecorder(
output_file=str(audio_dumps_dir / f"tts_recording_{stream_id}.wav"),
params=transport_params,
frame_type=TTSAudioRawFrame,
)
# Used to synchronize the user and bot transcripts in the UI
stt_transcript_synchronization = UserTranscriptSynchronization()
tts_transcript_synchronization = BotTranscriptSynchronization()
# Start with empty context; LangGraph agent manages prompts and policy
context = OpenAILLMContext([])
# Store context globally so WebSocket can access it
pc_id = webrtc_connection.pc_id
contexts_map[pc_id] = context
# Configure speculative speech processing based on environment variable
enable_speculative_speech = os.getenv("ENABLE_SPECULATIVE_SPEECH", "true").lower() == "true"
if enable_speculative_speech:
context_aggregator = create_nvidia_context_aggregator(context, send_interims=True)
tts_response_cacher = NvidiaTTSResponseCacher()
else:
context_aggregator = llm.create_context_aggregator(context)
tts_response_cacher = None
transcript_processor_output = WebsocketTranscriptOutput(ws)
pipeline = Pipeline(
[
transport.input(), # Websocket input from client
asr_recorder,
stt, # Speech-To-Text
stt_transcript_synchronization,
context_aggregator.user(),
llm, # LLM
tts, # Text-To-Speech
tts_recorder,
*([tts_response_cacher] if tts_response_cacher else []), # Include cacher only if enabled
tts_transcript_synchronization,
transcript_processor_output,
transport.output(), # Websocket output to client
context_aggregator.assistant(),
]
)
task = PipelineTask(
pipeline,
params=PipelineParams(
allow_interruptions=True,
enable_metrics=True,
enable_usage_metrics=True,
send_initial_empty_metrics=True,
start_metadata={"stream_id": stream_id},
),
)
# No auto-kickoff; LangGraph determines when/how to greet
runner = PipelineRunner(handle_sigint=False)
await runner.run(task)
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
"""WebSocket endpoint for handling voice agent connections.
Args:
websocket: The WebSocket connection to handle
"""
await websocket.accept()
try:
request = await websocket.receive_json()
pc_id = request.get("pc_id")
assistant_from_client = request.get("assistant")
if pc_id and pc_id in pcs_map:
pipecat_connection = pcs_map[pc_id]
logger.info(f"Reusing existing connection for pc_id: {pc_id}")
await pipecat_connection.renegotiate(sdp=request["sdp"], type=request["type"])
else:
# Build dynamic servers (Twilio or env) for new connections
dynamic_servers = _build_server_ice_servers()
pipecat_connection = SmallWebRTCConnection(dynamic_servers if dynamic_servers else ice_servers)
await pipecat_connection.initialize(sdp=request["sdp"], type=request["type"])
@pipecat_connection.event_handler("closed")
async def handle_disconnected(webrtc_connection: SmallWebRTCConnection):
logger.info(f"Discarding peer connection for pc_id: {webrtc_connection.pc_id}")
pcs_map.pop(webrtc_connection.pc_id, None) # Remove connection reference
contexts_map.pop(webrtc_connection.pc_id, None) # Remove context reference
asyncio.create_task(run_bot(pipecat_connection, websocket, assistant_from_client))
answer = pipecat_connection.get_answer()
pcs_map[answer["pc_id"]] = pipecat_connection
await websocket.send_json(answer)
# Keep the connection open and print text messages
while True:
try:
message = await websocket.receive_text()
# Parse JSON message from UI
try:
data = json.loads(message)
message = data.get("message", "").strip()
if data.get("type") == "context_reset" and message:
print(f"Received context reset from UI: {message}")
logger.info(f"Context reset from UI: {message}")
# Forward context reset as a user message to LangGraph on next turn
pc_id = pipecat_connection.pc_id
if pc_id in contexts_map:
context = contexts_map[pc_id]
context.add_message({"role": "user", "content": message})
else:
print(f"No context found for pc_id: {pc_id}")
except json.JSONDecodeError:
print(f"Non-JSON message: {message}")
except Exception as e:
logger.error(f"Error processing message: {e}")
break
except WebSocketDisconnect:
logger.info("Client disconnected from websocket")
@app.get("/get_prompt")
async def get_prompt():
"""Report that the LangGraph agent owns the prompt/policy."""
return {
"prompt": "",
"name": "LangGraph-managed",
"description": "Prompt and persona are managed by the LangGraph agent.",
}
# RTC config endpoint must be registered before mounting static at "/"
@app.get("/rtc-config")
async def rtc_config():
"""Expose browser RTC ICE configuration based on environment variables or Twilio.
Uses Twilio dynamic TURN credentials when TWILIO_ACCOUNT_SID/TWILIO_AUTH_TOKEN are set.
Falls back to TURN_* env vars. Always includes a public STUN fallback.
"""
try:
servers = _build_client_ice_servers()
return {"iceServers": servers}
except Exception as e: # noqa: BLE001
logger.warning(f"rtc-config dynamic build failed: {e}")
# Final safe fallback
return {"iceServers": [{"urls": "stun:stun.l.google.com:19302"}]}
# Serve static UI (if bundled) after API/WebSocket routes so they still take precedence
UI_DIST_DIR = Path(__file__).parent / "ui" / "dist"
if UI_DIST_DIR.exists():
app.mount("/", StaticFiles(directory=str(UI_DIST_DIR), html=True), name="static")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="WebRTC demo")
parser.add_argument("--host", default="0.0.0.0", help="Host for HTTP server (default: localhost)")
parser.add_argument("--port", type=int, default=7860, help="Port for HTTP server (default: 7860)")
parser.add_argument("--verbose", "-v", action="count")
args = parser.parse_args()
logger.remove(0)
if args.verbose:
logger.add(sys.stderr, level="TRACE")
else:
logger.add(sys.stderr, level="DEBUG")
uvicorn.run(app, host=args.host, port=args.port)